Prediction of Broadband Self-noise of an Airfoil

Prediction of Broadband Self-noise of an Airfoil PDF Author: Carlos L. Gomez
Publisher:
ISBN:
Category : Acoustic models
Languages : en
Pages : 198

Get Book Here

Book Description

Prediction of Broadband Self-noise of an Airfoil

Prediction of Broadband Self-noise of an Airfoil PDF Author: Carlos L. Gomez
Publisher:
ISBN:
Category : Acoustic models
Languages : en
Pages : 198

Get Book Here

Book Description


Airfoil Self-Noise and Prediction

Airfoil Self-Noise and Prediction PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722933173
Category :
Languages : en
Pages : 146

Get Book Here

Book Description
A prediction method is developed for the self-generated noise of an airfoil blade encountering smooth flow. The prediction methods for the individual self-noise mechanisms are semiempirical and are based on previous theoretical studies and data obtained from tests of two- and three-dimensional airfoil blade sections. The self-noise mechanisms are due to specific boundary-layer phenomena, that is, the boundary-layer turbulence passing the trailing edge, separated-boundary-layer and stalled flow over an airfoil, vortex shedding due to laminar boundary layer instabilities, vortex shedding from blunt trailing edges, and the turbulent vortex flow existing near the tip of lifting blades. The predictions are compared successfully with published data from three self-noise studies of different airfoil shapes. An application of the prediction method is reported for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements. A computer code of the method is given. Brooks, Thomas F. and Pope, D. Stuart and Marcolini, Michael A. Langley Research Center AEROACOUSTICS; AERODYNAMIC NOISE; AIRFOIL PROFILES; AIRFOILS; BLADE-VORTEX INTERACTION; BOUNDARY LAYER SEPARATION; BOUNDARY LAYERS; NOISE PREDICTION (AIRCRAFT); VORTEX SHEDDING; AERODYNAMIC STALLING; APPLICATIONS PROGRAMS (COMPUTERS); NOISE MEASUREMENT; NOISE SPECTRA; ROTARY WINGS; STROUHAL NUMBER; TRAILING EDGES; VORTICES; WIND TUNNEL TESTS...

Airfoil Self-noise and Prediction

Airfoil Self-noise and Prediction PDF Author: Thomas F. Brooks
Publisher:
ISBN:
Category : Aerofoils
Languages : en
Pages : 148

Get Book Here

Book Description


Computational Aeroacoustic Prediction of Airfoil Self-noise at Static Angles of Attack

Computational Aeroacoustic Prediction of Airfoil Self-noise at Static Angles of Attack PDF Author: Alison Zilstra
Publisher:
ISBN:
Category : Aerodynamic noise
Languages : en
Pages : 79

Get Book Here

Book Description
Aeroacoustic noise from wind turbines is often an obstacle in the implementation of wind farms. Reduction of this noise is key to allowing the expansion of the wind energy sector which is crucial for decreasing the dependence on fossil fuel energy sources. The use of a fully analytical computational model for aeroacoustic noise will allow for acoustics to be incorporated into the design stage of new wind turbine technologies. This thesis investigates the use of a predictive model for the noise from two dimensional (2D) blade segments using computational fluid dynamics (CFD). The simulation uses Reynolds Averaged Navier-Stokes (RANS) to initialize the simulation, and then a combination of Large Eddy Simulation (LES) and the Ffowcs-Williams and Hawkings (FW-H) acoustic analogy to predict the flow and acoustics, respectively. The SD 7037 and NACA 0012 airfoils were simulated and compared against experimental flow and acoustics data. The SD 7037 airfoil was tested using incompressible and compressible LES simulation for a Reynolds number of Re=4.25x104. The results show good prediction of both the flow and acoustics, and the source of the tonal noise generated by the airfoil at 0° angle of attack (AOA) was determined to be a result of 2D boundary layer behaviour, and also the transition from 2D to 3D behaviour. The 1° AOA results did not predict the tonal noise found in experiments, but it was determined that inaccuracies in some of the simulations caused the boundary layer behaviour to falsely change to that of the experimental 2° or 3° AOA. The NACA 0012 airfoil was tested using incompressible LES for a high Re case of Re=1.5x106. The flow simulation for this case was good, however the acoustic prediction was at a higher sound pressure level (SPL) than the experimental data. The second case of this simulation predicted tonal noise when experiments predicted broadband noise only. The simulation of this false tonal noise was attributed to instabilities in the simulation. The differences between the SD 7037 1° results, where instabilities caused no tones to be simulated, and the NACA 0012 results for the second case, where instabilities caused false tones to be predicted, shows that care must be taken in the setup of the simulation. Recommendations for future work are to perform a grid independence study and sensitivity analysis to determine the cause of these false predictions. That being said, overall, the predictive abilities of the computational aeroacoustic model result in good prediction of the airfoil self-noise for static AOAs.

Airfoil Aeroacoustics, LES and Acoustic Analogy Predictions

Airfoil Aeroacoustics, LES and Acoustic Analogy Predictions PDF Author: William Roberto Wolf
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 238

Get Book Here

Book Description
The development of physics-based noise prediction tools for analysis of aerodynamic noise sources is of paramount importance since noise regulations have become more stringent. Direct simulation of aerodynamic noise remains prohibitively expensive for engineering problems because of the resolution requirements. Therefore, hybrid approaches that consist of predicting nearfield flow quantities by a suitable CFD simulation and farfield sound radiation by aeroacoustic integral methods are more attractive. In this work, we apply the fast multipole method (FMM) to accelerate the solution of boundary integral equation methods such as the boundary element method (BEM) and the Ffowcs Williams & Hawkings (FWH) acoustic analogy formulation. The FMM-BEM is implemented for the solution of acoustic scattering problems and the effects of non-uniform potential flows on acoustic scattering are investigated. The FMM-FWH is implemented for the solution of two and three-dimensional problems of sound propagation. The effects of flow convection and non-linear quadrupole sources are assessed through the study of sound generated by unsteady laminar flows. Finally, a hybrid methodology is applied for the investigation of airfoil noise. This study is important for the design of aerodynamic shapes such as wings and high-lift devices, as well as wind turbine blades, fans and propellers. The present investigation of airfoil self-noise generation and propagation concerns the broadband noise that arises from the interaction of turbulent boundary layers with the airfoil trailing edge and tonal noise that arises from vortex shedding generated by laminar boundary layers. Nearfield acoustic sources are computed using compressible large eddy simulation (LES) and acoustic predictions are performed by the FMM-FWH. Numerical simulations are conducted for a NACA0012 airfoil with tripped boundary layers and blunt rounded trailing edge at different Mach numbers and angles of incidence. The effects of non-linear quadrupole sources and convection are assessed. In order to validate the numerical solutions, flow simulation and acoustic prediction results are compared to experimental data available in the literature and excellent agreement is observed.

Trailing Edge Noise Prediction Using the Non-Linear Disturbance Equations

Trailing Edge Noise Prediction Using the Non-Linear Disturbance Equations PDF Author: Abhishek Jain
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
AIRFOIL self-noise consists of five major sources. One of these identified sources is turbulent boundary layer -- trailing edge (TBL-TE) noise, which is an important source of rotor and wind turbine broadband noise, and the focus of this thesis. Trailing edge noise is the result of unsteady flow interacting with the trailing edge of an airfoil or other sharp edged flow surface. The presence of the sharp trailing edge scatters the sound generated by the turbulent eddies very efficiently, especially for sources in the immediate vicinity of the edge. There is a need for accurate and computationally efficient methods to calculate the turbulent boundary layer trailing-edge (TBL-TE) noise that are not reliant on empirical data. The majority of the current semi-empirical techniques are based on measurements from symmetric NACA airfoil sections (i.e. NACA 0012). These techniques are generally not coupled with CFD solvers to obtain turbulent boundary layer data that provides pertinent parameters used in the acoustic calculations. Some methods exist that incorporate CFD solutions like Large Eddy simulations (LES) into their noise prediction algorithms. But these are prohibitively expensive and impractical for routine use. The method described in this paper is a first principles approach that aims to predict the TBL-TE noise using computational aeroacoustic (CAA) techniques without resorting to empiricism.The prediction of trailing edge noise requires an accurate calculation of the boundary layer fluctuations in the vicinity of the trailing edge. Scales in the computational domain ranging from the small turbulent boundary layer scales to those of the long-range noise propagation need to be resolved. These data can be obtained using simulation techniques like Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES). However such simulations for complete helicopters or wind turbine rotors are impractical given today's computational resources. Also, DNS becomes unrealistic for the propagation of the acoustic signal to distant observers. The method described here overcomes these limitations by using a hybrid CAA approach coupled with a flow solver based on the non-linear disturbance equations (NLDE). The overall problem is separated into component problems with the NLDE equations applied over a relatively small noise generating region i.e. approximately the last 10% of the chord or less. This makes the solution more computationally efficient than LES for the full airfoil or rotor and enables the use of the most computationally efficient methods in the required regions. The proposed method is advantageous to helicopter and wind turbine manufacturers as it provides a tool for the prediction of rotor broadband noise at the design stage. This can also be used as a tool to reduce noise through the analysis of appropriate noise reduction devices.

Airfoil Aeroacoustics, LES and Acoustic Analogy Predictions

Airfoil Aeroacoustics, LES and Acoustic Analogy Predictions PDF Author: William Roberto Wolf
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The development of physics-based noise prediction tools for analysis of aerodynamic noise sources is of paramount importance since noise regulations have become more stringent. Direct simulation of aerodynamic noise remains prohibitively expensive for engineering problems because of the resolution requirements. Therefore, hybrid approaches that consist of predicting nearfield flow quantities by a suitable CFD simulation and farfield sound radiation by aeroacoustic integral methods are more attractive. In this work, we apply the fast multipole method (FMM) to accelerate the solution of boundary integral equation methods such as the boundary element method (BEM) and the Ffowcs Williams & Hawkings (FWH) acoustic analogy formulation. The FMM-BEM is implemented for the solution of acoustic scattering problems and the effects of non-uniform potential flows on acoustic scattering are investigated. The FMM-FWH is implemented for the solution of two and three-dimensional problems of sound propagation. The effects of flow convection and non-linear quadrupole sources are assessed through the study of sound generated by unsteady laminar flows. Finally, a hybrid methodology is applied for the investigation of airfoil noise. This study is important for the design of aerodynamic shapes such as wings and high-lift devices, as well as wind turbine blades, fans and propellers. The present investigation of airfoil self-noise generation and propagation concerns the broadband noise that arises from the interaction of turbulent boundary layers with the airfoil trailing edge and tonal noise that arises from vortex shedding generated by laminar boundary layers. Nearfield acoustic sources are computed using compressible large eddy simulation (LES) and acoustic predictions are performed by the FMM-FWH. Numerical simulations are conducted for a NACA0012 airfoil with tripped boundary layers and blunt rounded trailing edge at different Mach numbers and angles of incidence. The effects of non-linear quadrupole sources and convection are assessed. In order to validate the numerical solutions, flow simulation and acoustic prediction results are compared to experimental data available in the literature and excellent agreement is observed.

Airfoil Self-noise and Prediction

Airfoil Self-noise and Prediction PDF Author: Thomas F. Brooks
Publisher:
ISBN:
Category : Aerofoils
Languages : en
Pages : 148

Get Book Here

Book Description


NASA Reference Publication

NASA Reference Publication PDF Author:
Publisher:
ISBN:
Category : Astronautics
Languages : en
Pages : 800

Get Book Here

Book Description


Aeroacoustics of Low Mach Number Flows

Aeroacoustics of Low Mach Number Flows PDF Author: Stewart Glegg
Publisher: Academic Press
ISBN: 0128097930
Category : Science
Languages : en
Pages : 554

Get Book Here

Book Description
Aeroacoustics of Low Mach Number Flows: Fundamentals, Analysis, and Measurement provides a comprehensive treatment of sound radiation from subsonic flow over moving surfaces, which is the most widespread cause of flow noise in engineering systems. This includes fan noise, rotor noise, wind turbine noise, boundary layer noise, and aircraft noise. Beginning with fluid dynamics, the fundamental equations of aeroacoustics are derived and the key methods of solution are explained, focusing both on the necessary mathematics and physics. Fundamentals of turbulence and turbulent flows, experimental methods and numerous applications are also covered. The book is an ideal source of information on aeroacoustics for researchers and graduate students in engineering, physics, or applied math, as well as for engineers working in this field. Supplementary material for this book is provided by the authors on the website www.aeroacoustics.net. The website provides educational content designed to help students and researchers in understanding some of the principles and applications of aeroacoustics, and includes example problems, data, sample codes, course plans and errata. The website is continuously being reviewed and added to. Explains the key theoretical tools of aeroacoustics, from Lighthill’s analogy to the Ffowcs Williams and Hawkings equation Provides detailed coverage of sound from lifting surfaces, boundary layers, rotating blades, ducted fans and more Presents the fundamentals of sound measurement and aeroacoustic wind tunnel testing