Performance Assessment of a 3-body Self-reacting Point Absorber Type Wave Energy Converter

Performance Assessment of a 3-body Self-reacting Point Absorber Type Wave Energy Converter PDF Author: Patrick Maloney
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Variable Inertia System Wave Energy Converter (VISWEC) is a self-reacting point absorber (SRPA) type wave energy converter (WEC) capable of changing its mechanical impedance using an internal reaction mass system. The reaction mass is coupled to a rotating assembly capable of varying its inertia and this changing inertia has the effect of creating an added inertial resistance, or effective mass, to oscillations of the reaction mass. An SRPA has two main bodies, designated Float and Spar, capable of utilizing the relative motion between the two bodies to create power through a power take-off (PTO). The implementation of the reaction mass, a 3rd body, and the variable inertial system (VIS) is designed to change the response of the Spar in order to create larger relative velocities between the two bodies and thus more power. It is also possible to lock the VIS within the Spar, and when this is done the system is reduced to a conventional 2-body SRPA configuration. To better understand the effects of the implementation of the VIS on the overall stability of the VISWEC and the power conversion performance, a numerical model simulation within ProteusDS, a time-domain modelling software, was created. Power production and parametric excitation are the metrics of comparison between the two systems. Parametric excitation is a phenomenon that correlates wave excitation frequency to roll stability and has been shown to negatively affect power production in SRPAs. Simulations of the 2 and 3-body provide a basis of comparison between the two systems and allow the assessment of parametric excitation prohibited or exacerbated by the implementation of the VIS as well as power production. The simulation executed within the commercial software ProteusDS incorporates articulated bodies defined with physical parameters connected through connections allowing kinematic constraints and relations and hydrodynamics of the hull geometries as they are exposed to regular waves. ProteusDS also has the ability to apply kinematic constrains on the entire system allowing the analysis of isolated modes of motion. The implementation of the VIS demonstrates a generally higher power production and stabilization of the system with regards to parametric excitation. While the 3-body system is more stable, the bandwidth at which rolling motion is induced increased in comparison to the 2-body system. Rolling motions in both the 2 and 3-body systems are characteristic of parametric excitation and show a direct correlation to reduced power production. Overall the 3-body VISWEC outperforms the typical 2-body SRPA representation but more research is required to refine the settings of the geometric and PTO control.

Performance Assessment of a 3-body Self-reacting Point Absorber Type Wave Energy Converter

Performance Assessment of a 3-body Self-reacting Point Absorber Type Wave Energy Converter PDF Author: Patrick Maloney
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Variable Inertia System Wave Energy Converter (VISWEC) is a self-reacting point absorber (SRPA) type wave energy converter (WEC) capable of changing its mechanical impedance using an internal reaction mass system. The reaction mass is coupled to a rotating assembly capable of varying its inertia and this changing inertia has the effect of creating an added inertial resistance, or effective mass, to oscillations of the reaction mass. An SRPA has two main bodies, designated Float and Spar, capable of utilizing the relative motion between the two bodies to create power through a power take-off (PTO). The implementation of the reaction mass, a 3rd body, and the variable inertial system (VIS) is designed to change the response of the Spar in order to create larger relative velocities between the two bodies and thus more power. It is also possible to lock the VIS within the Spar, and when this is done the system is reduced to a conventional 2-body SRPA configuration. To better understand the effects of the implementation of the VIS on the overall stability of the VISWEC and the power conversion performance, a numerical model simulation within ProteusDS, a time-domain modelling software, was created. Power production and parametric excitation are the metrics of comparison between the two systems. Parametric excitation is a phenomenon that correlates wave excitation frequency to roll stability and has been shown to negatively affect power production in SRPAs. Simulations of the 2 and 3-body provide a basis of comparison between the two systems and allow the assessment of parametric excitation prohibited or exacerbated by the implementation of the VIS as well as power production. The simulation executed within the commercial software ProteusDS incorporates articulated bodies defined with physical parameters connected through connections allowing kinematic constraints and relations and hydrodynamics of the hull geometries as they are exposed to regular waves. ProteusDS also has the ability to apply kinematic constrains on the entire system allowing the analysis of isolated modes of motion. The implementation of the VIS demonstrates a generally higher power production and stabilization of the system with regards to parametric excitation. While the 3-body system is more stable, the bandwidth at which rolling motion is induced increased in comparison to the 2-body system. Rolling motions in both the 2 and 3-body systems are characteristic of parametric excitation and show a direct correlation to reduced power production. Overall the 3-body VISWEC outperforms the typical 2-body SRPA representation but more research is required to refine the settings of the geometric and PTO control.

Self-reacting Point Absorber Wave Energy Converters

Self-reacting Point Absorber Wave Energy Converters PDF Author: Scott J. Beatty
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A comprehensive set of experimental and numerical comparisons of the performance of two self-reacting point absorber wave energy converter (WEC) designs is undertaken in typical operating conditions. The designs are either currently, or have recently been, under development for commercialization. The experiments consist of a series of 1:25 scale model tests to quantify hydrodynamic parameters, motion dynamics, and power conversion. Each WEC is given a uniquely optimized power take off damping level. For hydrodynamic parameter identification, an optimization based method to simultaneously extract Morison drag and Coulomb friction coefficients from decay tests of under-damped, floating bodies is developed. The physical model features a re-configurable reacting body shape, a feedback controlled power take-off, a heave motion constraint system, and a mooring apparatus. A theoretical upper bound on power conversion for single body WECs, called Budal's upper bound, is extended to two body WECs.

Proceedings of the 2nd International Conference on Green Energy, Environment and Sustainable Development (GEESD2021)

Proceedings of the 2nd International Conference on Green Energy, Environment and Sustainable Development (GEESD2021) PDF Author: D. Dobrotă
Publisher: IOS Press
ISBN: 1643682237
Category : Technology & Engineering
Languages : en
Pages : 764

Get Book Here

Book Description
The need for green technologies and solutions which will deliver the energy requirements of both the developed and developing world to support sustainability and protect the environment worldwide has never been more urgent. This book contains the proceedings of the 2nd International Conference on Green Energy, Environment and Sustainable Development (GEESD2021) which, due to the COVID-19 pandemic around the world and with the strict travel restrictions in China, was held as a hybrid conference (both physically and online via Zoom) in Shanghai, China on 26 and 27 June 2021. It provided an opportunity to bring together an international community of leading scientists, researchers, engineers and academics, as well as industrial professionals, to exchange and share their experiences and research results in the energy, environment and sustainable development sector. In total, 80 participants were able to exchange knowledge and discuss the latest developments in the field. GEESD2021 attracted more than 250 submissions, 88 of which were accepted after an extensive period of peer review by more than 100 reviewers and members of the program committee. These are included here, grouped into 3 sections, with 28 papers on sustainable energy; 34 on ecology; and 26 papers covering environmental pollution and protection. Offering an overview of the most up-to-date findings and technologies in the field of sustainable energy and environmental protection, the book will be of interest to all those working in this field.

Conceptual Design of Wave Energy Converters

Conceptual Design of Wave Energy Converters PDF Author: Kush Bubbar
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Despite presenting a vast opportunity as a renewable energy resource, ocean wave energy has yet to gain commercial success due to the design space being divergent. To facilitate convergence, this dissertation has proposed a method using the mechanical circuit framework to transform a linear representation of any wave energy converter into an equivalent single body absorber, or canonical form, through the systematic application of Thévenin's theorem. Once the canonical form for a WEC has been established, criteria originally derived to maximize power capture in single body absorbers is then applied. Through this process, a master-slave relationship was introduced that relates the geometry and PTO parameters of a wave energy converter device to one another and presents a new method to establish the best possible power capture in analytical form based on dynamic response. This method has been applied to reprove the power capture limits derived by Falnes and Korde for their point absorber devices, and proceeds to introduce a new analytical power capture limit for the self-reacting point absorber architecture, while concurrently establishing design criteria required to achieve the limit. A new technology, the inerter, has been introduced as a means to implement the design criteria. The method has been further developed to establish the generic optimal phase control conditions for complex WEC architectures. In doing so, generic equations have been derived that describe how a geometry control feature set is used to satisfy the required optimal phase criteria. Finally, this dissertation has demonstrated that applying this method with a generic reactive force source enacting the geometry control establishes analytical optimal conditions on the force source to achieve optimal power capture. This work revealed how the analytical equations defining the optimal force source reactance derived in this dissertation for self-reacting point absorbers represents a tangible design constraint prior to specifying how that constraint must be satisfied. As the force source is generic and conceptual, substitution with a physical embodiment must adhere to this constraint thus, steering technology innovation.

Analysis and Development of a Three Body Heaving Wave Energy Converter

Analysis and Development of a Three Body Heaving Wave Energy Converter PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A relative motion based heaving point absorber wave energy converter is being co-developed by researchers at the University of Victoria and SyncWave Systems Inc. To that end---this thesis represents a multi-faceted contribution to the development effort. A small scale two-body prototype wave energy converter was developed and tested in a wave tank. Although experimental problems were encountered, the results compare reasonably well to the output of a two degree of freedom linear dynamics model in the frequency domain. A two-body wave energy converter design is parameterized as a basis for an optimization and sensitivity study undertaken to illustrate the potential benefits of frequency response tuning. Further, a mechanical system concept for frequency response tuning is presented. The two degree of freedom model is expanded to three degrees of freedom to account for the tuning system. An optimization procedure, utilizing a Sequential Quadratic Programming algorithm, is developed to establish control schedules to maximize power capture as a function of the control variables. A spectral approach is developed to estimate WEC power capture in irregular waves. Finally, as a case study, the modeling, optimization, and spectral methods are applied to predict performance for a large scale wave energy converter deployed offshore of a remote Alaskan island. Using archived sea-state data and community electrical load profiles, a wave/diesel hybrid integration with the remote Alaskan community power system is assessed to be technologically feasible.

Analysis and Development of a Three Body Heaving Wave Energy Converter

Analysis and Development of a Three Body Heaving Wave Energy Converter PDF Author: Scott J. Beatty
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A relative motion based heaving point absorber wave energy converter is being co-developed by researchers at the University of Victoria and SyncWave Systems Inc. To that end--this thesis represents a multi-faceted contribution to the development effort. A small scale two-body prototype wave energy converter was developed and tested in a wave tank. Although experimental problems were encountered, the results compare reasonably well to the output of a two degree of freedom linear dynamics model in the frequency domain. A two-body wave energy converter design is parameterized as a basis for an optimization and sensitivity study undertaken to illustrate the potential benefits of frequency response tuning. Further, a mechanical system concept for frequency response tuning is presented. The two degree of freedom model is expanded to three degrees of freedom to account for the tuning system. An optimization procedure, utilizing a Sequential Quadratic Programming algorithm, is developed to establish control schedules to maximize power capture as a function of the control variables. A spectral approach is developed to estimate WEC power capture in irregular waves. Finally, as a case study, the modeling, optimization, and spectral methods are applied to predict performance for a large scale wave energy converter deployed offshore of a remote Alaskan island. Using archived sea-state data and community electrical load profiles, a wave/diesel hybrid integration with the remote Alaskan community power system is assessed to be technologically feasible.

Renewable Energy in Marine Environment

Renewable Energy in Marine Environment PDF Author: Eugen Rusu
Publisher: MDPI
ISBN: 3039285289
Category : Technology & Engineering
Languages : en
Pages : 324

Get Book Here

Book Description
The effects of human-caused global warming are obvious, requiring new strategies and approaches. The concept of business-as-usual is now no longer beneficial. Extraction of renewable energy in marine environments represents a viable solution and an important path for the future. These huge renewable energy resources in seas and oceans can be harvested, including wind, tide, and waves. Despite the initial difficulties related mostly to the elevated operational risks in the harsh marine environment, newly developed technologies are economically effective or promising. Simultaneously, many challenges remain to be faced. These are the main issues targeted by the present book, which is associated with the Special Issue of Energies Journal entitled “Renewable Energy in Marine Environment”. Papers on innovative technical developments, reviews, case studies, and analytics, as well as assessments, and papers from different disciplines that are relevant to the topic are included. From this perspective, we hope that the results presented are of interest to for scientists and those in related fields such as energy and marine environments, as well as for a wider audience.

Handbook of Ocean Wave Energy

Handbook of Ocean Wave Energy PDF Author: Arthur Pecher
Publisher: Springer
ISBN: 331939889X
Category : Technology & Engineering
Languages : en
Pages : 305

Get Book Here

Book Description
This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.

Ocean Wave Energy

Ocean Wave Energy PDF Author: Joao Cruz
Publisher: Springer Science & Business Media
ISBN: 3540748954
Category : Technology & Engineering
Languages : en
Pages : 435

Get Book Here

Book Description
The authors of this timely reference provide an updated and global view on ocean wave energy conversion – and they do so for wave energy developers as well as for students and professors. The book is orientated to the practical solutions that this new industry has found so far and the problems that any device needs to face. It describes the actual principles applied to machines that convert wave power to electricity and examines state-of-the-art modern systems.

Hydrodynamic Control of Wave Energy Devices

Hydrodynamic Control of Wave Energy Devices PDF Author: Umesh A. Korde
Publisher: Cambridge University Press
ISBN: 1316720640
Category : Technology & Engineering
Languages : en
Pages : 385

Get Book Here

Book Description
With this self-contained and comprehensive text, students and researchers will gain a detailed understanding of the fundamental aspects of the hydrodynamic control of wave energy converters. Such control is necessary to maximise energy capture for a given device configuration and plays a major role in efforts to make wave energy economic. Covering a wide range of disciplines, the reader is taken from the mathematical and technical fundamentals, through the main pillars of wave energy hydrodynamic control, right through to state-of-the-art algorithms for hydrodynamic control. The various operating principles of wave energy converters are exposed and the unique aspects of the hydrodynamic control problem highlighted, with a variety of potential solutions discussed. Supporting material on wave forecasting and the interaction of the hydrodynamic control problem with other aspects of wave energy device optimisation, such as device geometry optimisation and optimal device array layout, is also provided.