Optical and Electronic Properties of Nano-Materials from First Principles Computation

Optical and Electronic Properties of Nano-Materials from First Principles Computation PDF Author: Jack Deslippe
Publisher:
ISBN:
Category :
Languages : en
Pages : 143

Get Book Here

Book Description
Recent advances in computational physics and chemistry have lead to greater understanding and predictability of the electronic and optical properties of materials. This understanding can be used to impact directly the development of future devices (whose properties depend on the underlying materials) such as light-emitting diodes (LEDs) and photovoltaics. In particular, density functional theory (DFT) has become the standard method for predicting the ground-state properties of solid-state systems, such-as total energies, atomic configurations and phonon frequencies. In the same period, the so called many-body perturbation theory techniques based on the dynamics of the single-particle and two-particle Green's function have become one of the standard methods for predicting the excited state properties associated with the addition of an electron, hole or electron-hole pair into a material. The GW and Bethe-Salpeter equation (GW-BSE) technique is a particularly robust methodology for computing the quasiparticle and excitonic properties of materials. The challenge over the last several years has been to apply these methods to increasingly complex systems. Nano-materials are materials that are very small (on the order of a nanometer) in at least one dimension (e.g. molecules, tubes/rods and sheets). These materials are of great interest for researchers because they exhibit new and interesting physical and electronic properties compared to those of conventional bulk crystals. These physical properties can often be tuned by controlling the geometry of the materials (for example the chiral angle of a nanotube). Various DFT computer packages have been optimized to compute the ground-state properties of large systems and nano-materials. However, the application of the GW-BSE methodology to large systems and large nano-materials is often thought to be too computationally demanding. In this work, we will discuss research towards understanding the electronic and optical properties of nano-materials using (and extending) first-principles computational techniques, namely the GW-BSE technique for applications to large systems and nano-materials in particular. While, the GW-BSE approach has, in the past, been prohibitively expensive on systems with more than 50 atoms, in Chapter 2, we show that through a combination methodological and algorithmic improvements, the standard GW-BSE approach can be applied to systems of 500-1000 atoms or 100 AU x 100 AU x 100 AU unit cells. We show that nearly linear parallel scaling of the GW-BSE methodology can be obtained up to tens of thousands (and beyond) of CPUs on current and future high performance supercomputers. In Chapter 3, we will discuss improving the DFT starting point of the GW-BSE approach through the use of COHSEX exchange-correlations functionals to create a nearly diagonal self-energy matrix. We show applications of this new methodology to molecular systems. In Chapter 4, we discuss the application of the GW-BSE methodology to semiconducting single-walled carbon nanotubes (SWCNTs) and the discovery of novel many-body physics in 1D semiconductors. In Chapter 5, we discuss the application of the GW-BSE methodology to metallic SWCNTs and graphene and the discovery of unexpectedly strong excitonic effects in low-dimensional metals and semi-metals.

Optical and Electronic Properties of Nano-Materials from First Principles Computation

Optical and Electronic Properties of Nano-Materials from First Principles Computation PDF Author: Jack Deslippe
Publisher:
ISBN:
Category :
Languages : en
Pages : 143

Get Book Here

Book Description
Recent advances in computational physics and chemistry have lead to greater understanding and predictability of the electronic and optical properties of materials. This understanding can be used to impact directly the development of future devices (whose properties depend on the underlying materials) such as light-emitting diodes (LEDs) and photovoltaics. In particular, density functional theory (DFT) has become the standard method for predicting the ground-state properties of solid-state systems, such-as total energies, atomic configurations and phonon frequencies. In the same period, the so called many-body perturbation theory techniques based on the dynamics of the single-particle and two-particle Green's function have become one of the standard methods for predicting the excited state properties associated with the addition of an electron, hole or electron-hole pair into a material. The GW and Bethe-Salpeter equation (GW-BSE) technique is a particularly robust methodology for computing the quasiparticle and excitonic properties of materials. The challenge over the last several years has been to apply these methods to increasingly complex systems. Nano-materials are materials that are very small (on the order of a nanometer) in at least one dimension (e.g. molecules, tubes/rods and sheets). These materials are of great interest for researchers because they exhibit new and interesting physical and electronic properties compared to those of conventional bulk crystals. These physical properties can often be tuned by controlling the geometry of the materials (for example the chiral angle of a nanotube). Various DFT computer packages have been optimized to compute the ground-state properties of large systems and nano-materials. However, the application of the GW-BSE methodology to large systems and large nano-materials is often thought to be too computationally demanding. In this work, we will discuss research towards understanding the electronic and optical properties of nano-materials using (and extending) first-principles computational techniques, namely the GW-BSE technique for applications to large systems and nano-materials in particular. While, the GW-BSE approach has, in the past, been prohibitively expensive on systems with more than 50 atoms, in Chapter 2, we show that through a combination methodological and algorithmic improvements, the standard GW-BSE approach can be applied to systems of 500-1000 atoms or 100 AU x 100 AU x 100 AU unit cells. We show that nearly linear parallel scaling of the GW-BSE methodology can be obtained up to tens of thousands (and beyond) of CPUs on current and future high performance supercomputers. In Chapter 3, we will discuss improving the DFT starting point of the GW-BSE approach through the use of COHSEX exchange-correlations functionals to create a nearly diagonal self-energy matrix. We show applications of this new methodology to molecular systems. In Chapter 4, we discuss the application of the GW-BSE methodology to semiconducting single-walled carbon nanotubes (SWCNTs) and the discovery of novel many-body physics in 1D semiconductors. In Chapter 5, we discuss the application of the GW-BSE methodology to metallic SWCNTs and graphene and the discovery of unexpectedly strong excitonic effects in low-dimensional metals and semi-metals.

First-principle Vs Experimental Design of Nanomaterials

First-principle Vs Experimental Design of Nanomaterials PDF Author: Omar Mounkachi
Publisher:
ISBN: 9781536139846
Category : Nanostructured materials
Languages : en
Pages : 115

Get Book Here

Book Description
The first-principle approach is designed for the interpretation of the experimental observations and prediction of properties for new nanomaterials. The understanding of physical phenomena requires a description at the atomic scale where size and geometric organization play important roles. The major challenge is to model systems as close as possible to those developed in the laboratory. The complexity both in terms of the geometric structure and chemical composition that comprise the modeling of such systems requires an entire panel of approaches ranging from semi-empirical methods to ab initio methods. At the atomic scale, the elementary bricks of the buildings are atoms. The cohesion and dynamics of these buildings are the result of interactions between these atoms. Two major classes of modeling techniques for these buildings can be distinguished: Electronic structure calculations and molecular simulation methods. Molecular simulation methods are limited in their application since they cannot be used to model properties that depend on the electronic structure. As part of the electronic structure calculations, the building is described by the notion of wave function. One of the fundamental tasks of quantum physics is to solve a differential equation according to the electronic, nuclear and spin coordinates via the Schrödinger equation. The resolution of this equation in analytical form is impossible, except in the case of hydrogenites. Different numerical resolution methods have been developed based on a series of simplifications and successive approximation techniques. Once solved, this equation gives the total energy of the system, the associated wave function, and the energies of the electronic states. These methods are applied at a temperature of zero and at a fixed pressure. There are several families of methods: Semi-empirical methods, Hartree-Fock (HF) methods and density functional (DFT) methods. From the dependence of the total energy on the volume of the mesh, we can deduce the equilibrium crystalline parameters, the modulus of rigidity or the enthalpy of formation. Finally and above all, they allow, through studies of electronic structure, to identify the phenomena that govern the substitutions. In other words, thanks to the fundamental laws of quantum physics, it is possible to compute macroscopic properties from microscopic information. The interface between the first-principle and experimental design could provide a way to answer a lot of problems and open questions on the physical properties of nanomaterials. The purpose of this book is to propose some ideas to answer the most important question in the design of nanomaterials (OD,1D and 2D) for nanotechnology application, namely, nanomaterials for spintronic application, nanomaterials for solar energy technologies application, magnetic refrigeration applications, switchable materials application and nanomedicine applications. Additionally, the author will discuss the correlation between the first-principle and experimental design to see how the properties of the yet-to-be-synthesized nanomaterials can be predicted. Based on experimental and on first-principle calculations design, the author will discuss structural, optical and magnetic properties of new nanomaterials. New physical properties will be discussed in nanomaterials recently observed, and this creates new opportunities for development and construction of a new nanomaterial for nanotechnology applications.

Optical Properties And Spectroscopy Of Nanomaterials

Optical Properties And Spectroscopy Of Nanomaterials PDF Author: Jin Zhong Zhang
Publisher: World Scientific
ISBN: 981446936X
Category : Technology & Engineering
Languages : en
Pages : 400

Get Book Here

Book Description
Optical properties are among the most fascinating and useful properties of nanomaterials and have been extensively studied using a variety of optical spectroscopic techniques. A basic understanding of the optical properties and related spectroscopic techniques is essential for anyone who is interested in learning about nanomaterials of semiconductors, insulators or metal. This is partly because optical properties are intimately related to other properties and functionalities (e.g. electronic, magnetic, and thermal) that are of fundamental importance to many technological applications, such as energy conversion, chemical analysis, biomedicine, optoelectronics, communication, and radiation detection.Intentionally designed for upper-level undergraduate students and beginning graduate students with some basic knowledge of quantum mechanics, this book provides the first systematic coverage of optical properties and spectroscopic techniques of nanomaterials.

Optics of Nanomaterials

Optics of Nanomaterials PDF Author: Vladimir I. Gavrilenko
Publisher: CRC Press
ISBN: 1466511729
Category : Science
Languages : en
Pages : 373

Get Book Here

Book Description
While the chemistry, physics, and optical properties of simple atoms and molecules are quite well understood, this book demonstrates that there is much to be learned about the optics of nanomaterials. Through comparative analysis of the size-dependent optical response from nanomaterials, it is shown that although strides have been made in computational chemistry and physics, bridging length scales from nano to macro remains a major challenge. Organic, molecular, polymer, and biological systems are shown to be potentially useful models for assembly. Our progress in understanding the optical properties of biological nanomaterials is important driving force for a variety of applications.

First Principles Study of Nanodiamond Optical and Electronic Properties

First Principles Study of Nanodiamond Optical and Electronic Properties PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 15

Get Book Here

Book Description
Nanometer sized diamond has been found in meteorites, proto-planetary nebulae and interstellar dusts, as well as in residues of detonation and in diamond films. Remarkably, the size distribution of diamond nanoparticles appears to be peaked around 2-5 nm, and to be largely independent of preparation conditions. Using ab-initio calculations, we have shown that in this size range nanodiamond has a fullerene-like surface and, unlike silicon and germanium, exhibits very weak quantum confinement effects. We called these carbon nanoparticles bucky-diamonds: their atomic structure, predicted by simulations, is consistent with many experimental findings. In addition, we carried out calculations of the stability of nanodiamond which provided a unifying explanation of its size distribution in extra-terrestrial samples, and in ultra-crystalline diamond films.

Optics of Nanomaterials

Optics of Nanomaterials PDF Author: Vladimir I. Gavrilenko
Publisher: CRC Press
ISBN: 1351358375
Category : Science
Languages : en
Pages : 322

Get Book Here

Book Description
Nanomaterials are mainly categorized into three groups: fundamental building blocks, dispersions or composites of building blocks in randomly ordered matrices, and spatially resolved, ordered nanostructures. Today, nanomaterials that offer some unique optical properties may find application as pure materials or may be integrated into larger structures. This book presents examples of both pure and composite materials that include organic–inorganic nanocomposites and quantum dots embedded into different matrices for various applications in modern nanotechnology. This edition has been thoroughly revised and updated with the most recent developments in the field. The newly added introductory paragraphs will help students and young researchers in better understanding the chapters. The new sections on frequently used physical constants and units conversions as well as the updated bibliography add to the book’s utility. This textbook is unique compared with its counterparts in the market in respect of its scope as it contains introductory sections to the important topics on nanomaterial optics. This feature broadens its readership from engineers and researchers working in the field of materials science and optics, to lecturers, graduate students, and beginners who want to deepen their knowledge in nanomaterial optics.

Nanomaterials

Nanomaterials PDF Author: Engg Kamakhya Prasad Ghatak
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110609355
Category : Science
Languages : en
Pages : 432

Get Book Here

Book Description
The work studies under different physical conditions the carrier contribution to elastic constants in heavily doped optoelectronic materials. In the presence of intense photon field the authors apply the Heisenberg Uncertainty Principle to formulate electron statistics. Many open research problems are discussed and numerous potential applications as quantum sensors and quantum cascade lasers are presented.

Optical Properties of Nanostructures

Optical Properties of Nanostructures PDF Author: Ying Fu
Publisher: Pan Stanford Publishing
ISBN: 9814303267
Category : Science
Languages : en
Pages : 330

Get Book Here

Book Description
This book discusses electrons and photons in and through nanostructures by the first-principles quantum mechanical theories and fundamental concepts (a unified coverage of nanostructured electronic and optical components) behind nanoelectronics and optoelectronics, the material basis, physical phenomena, device physics, as well as designs and applications. The combination of viewpoints presented in the book can help foster further research and cross-disciplinary interaction needed to surmount the barriers facing future generations of technology design.

Selected Papers from the 1st International Online Conference on Nanomaterials

Selected Papers from the 1st International Online Conference on Nanomaterials PDF Author: Ana María Diez-Pascual
Publisher: MDPI
ISBN: 3039285343
Category : Technology & Engineering
Languages : en
Pages : 92

Get Book Here

Book Description
This book compiles selected papers from the Proceedings of the 1st International Online Conference on Nanomaterials, held 1–15 September, 2018 on sciforum.net, an online platform for hosting scholarly e-conferences and discussion groups. It targets a broad readership of physicists, chemists, materials scientists, biologists, environmentalists, and nanotechnologists, and provides interesting examples of the most recent advances in the synthesis, characterization, and applications of nanomaterials.

First-principles Calculations in Real-space Formalism

First-principles Calculations in Real-space Formalism PDF Author: Kikuji Hirose
Publisher: World Scientific
ISBN: 1860945120
Category : Science
Languages : en
Pages : 266

Get Book Here

Book Description
With cutting-edge materials and minute electronic devices being produced by the latest nanoscale fabrication technology, it is essential for scientists and engineers to rely on first-principles (ab initio) calculation methods to fully understand the electronic configurations and transport properties of nanostructures. It is now imperative to introduce practical and tractable calculation methods that accurately describe the physics in nanostructures suspended between electrodes.This timely volume addresses novel methods for calculating electronic transport properties using real-space formalisms free from geometrical restrictions. The book comprises two parts: The first details the basic formalism of the real-space finite-difference method and its applications. This provides the theoretical foundation for the second part of the book, which presents the methods for calculating the properties of electronic transport through nanostructures sandwiched by semi-infinite electrodes.