The Numerical Solution of the American Option Pricing Problem

The Numerical Solution of the American Option Pricing Problem PDF Author: Carl Chiarella
Publisher: World Scientific
ISBN: 9814452629
Category : Options (Finance)
Languages : en
Pages : 223

Get Book Here

Book Description
The early exercise opportunity of an American option makes it challenging to price and an array of approaches have been proposed in the vast literature on this topic. In The Numerical Solution of the American Option Pricing Problem, Carl Chiarella, Boda Kang and Gunter Meyer focus on two numerical approaches that have proved useful for finding all prices, hedge ratios and early exercise boundaries of an American option. One is a finite difference approach which is based on the numerical solution of the partial differential equations with the free boundary problem arising in American option pricing, including the method of lines, the component wise splitting and the finite difference with PSOR. The other approach is the integral transform approach which includes Fourier or Fourier Cosine transforms. Written in a concise and systematic manner, Chiarella, Kang and Meyer explain and demonstrate the advantages and limitations of each of them based on their and their co-workers'' experiences with these approaches over the years. Contents: Introduction; The Merton and Heston Model for a Call; American Call Options under Jump-Diffusion Processes; American Option Prices under Stochastic Volatility and Jump-Diffusion Dynamics OCo The Transform Approach; Representation and Numerical Approximation of American Option Prices under Heston; Fourier Cosine Expansion Approach; A Numerical Approach to Pricing American Call Options under SVJD; Conclusion; Bibliography; Index; About the Authors. Readership: Post-graduates/ Researchers in finance and applied mathematics with interest in numerical methods for American option pricing; mathematicians/physicists doing applied research in option pricing. Key Features: Complete discussion of different numerical methods for American options; Able to handle stochastic volatility and/or jump diffusion dynamics; Able to produce hedge ratios efficiently and accurately"

The Numerical Solution of the American Option Pricing Problem

The Numerical Solution of the American Option Pricing Problem PDF Author: Carl Chiarella
Publisher: World Scientific
ISBN: 9814452629
Category : Options (Finance)
Languages : en
Pages : 223

Get Book Here

Book Description
The early exercise opportunity of an American option makes it challenging to price and an array of approaches have been proposed in the vast literature on this topic. In The Numerical Solution of the American Option Pricing Problem, Carl Chiarella, Boda Kang and Gunter Meyer focus on two numerical approaches that have proved useful for finding all prices, hedge ratios and early exercise boundaries of an American option. One is a finite difference approach which is based on the numerical solution of the partial differential equations with the free boundary problem arising in American option pricing, including the method of lines, the component wise splitting and the finite difference with PSOR. The other approach is the integral transform approach which includes Fourier or Fourier Cosine transforms. Written in a concise and systematic manner, Chiarella, Kang and Meyer explain and demonstrate the advantages and limitations of each of them based on their and their co-workers'' experiences with these approaches over the years. Contents: Introduction; The Merton and Heston Model for a Call; American Call Options under Jump-Diffusion Processes; American Option Prices under Stochastic Volatility and Jump-Diffusion Dynamics OCo The Transform Approach; Representation and Numerical Approximation of American Option Prices under Heston; Fourier Cosine Expansion Approach; A Numerical Approach to Pricing American Call Options under SVJD; Conclusion; Bibliography; Index; About the Authors. Readership: Post-graduates/ Researchers in finance and applied mathematics with interest in numerical methods for American option pricing; mathematicians/physicists doing applied research in option pricing. Key Features: Complete discussion of different numerical methods for American options; Able to handle stochastic volatility and/or jump diffusion dynamics; Able to produce hedge ratios efficiently and accurately"

Numerical Solution Of The American Option Pricing Problem, The: Finite Difference And Transform Approaches

Numerical Solution Of The American Option Pricing Problem, The: Finite Difference And Transform Approaches PDF Author: Carl Chiarella
Publisher: World Scientific
ISBN: 9814452637
Category : Business & Economics
Languages : en
Pages : 223

Get Book Here

Book Description
The early exercise opportunity of an American option makes it challenging to price and an array of approaches have been proposed in the vast literature on this topic. In The Numerical Solution of the American Option Pricing Problem, Carl Chiarella, Boda Kang and Gunter Meyer focus on two numerical approaches that have proved useful for finding all prices, hedge ratios and early exercise boundaries of an American option. One is a finite difference approach which is based on the numerical solution of the partial differential equations with the free boundary problem arising in American option pricing, including the method of lines, the component wise splitting and the finite difference with PSOR. The other approach is the integral transform approach which includes Fourier or Fourier Cosine transforms. Written in a concise and systematic manner, Chiarella, Kang and Meyer explain and demonstrate the advantages and limitations of each of them based on their and their co-workers' experiences with these approaches over the years.

Fractional Calculus

Fractional Calculus PDF Author: Dumitru Baleanu
Publisher: World Scientific
ISBN: 9814355208
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
This title will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods.

Finite Difference Methods,Theory and Applications

Finite Difference Methods,Theory and Applications PDF Author: Ivan Dimov
Publisher: Springer
ISBN: 3319202391
Category : Computers
Languages : en
Pages : 443

Get Book Here

Book Description
This book constitutes the thoroughly refereed post-conference proceedings of the 6th International Conference on Finite Difference Methods, FDM 2014, held in Lozenetz, Bulgaria, in June 2014. The 36 revised full papers were carefully reviewed and selected from 62 submissions. These papers together with 12 invited papers cover topics such as finite difference and combined finite difference methods as well as finite element methods and their various applications in physics, chemistry, biology and finance.

Finite Difference Methods in Financial Engineering

Finite Difference Methods in Financial Engineering PDF Author: Daniel J. Duffy
Publisher: John Wiley & Sons
ISBN: 1118856481
Category : Business & Economics
Languages : en
Pages : 452

Get Book Here

Book Description
The world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method. In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature: Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options Early exercise features and approximation using front-fixing, penalty and variational methods Modelling stochastic volatility models using Splitting methods Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work Modelling jumps using Partial Integro Differential Equations (PIDE) Free and moving boundary value problems in QF Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.

Novel Methods in Computational Finance

Novel Methods in Computational Finance PDF Author: Matthias Ehrhardt
Publisher: Springer
ISBN: 3319612824
Category : Mathematics
Languages : en
Pages : 599

Get Book Here

Book Description
This book discusses the state-of-the-art and open problems in computational finance. It presents a collection of research outcomes and reviews of the work from the STRIKE project, an FP7 Marie Curie Initial Training Network (ITN) project in which academic partners trained early-stage researchers in close cooperation with a broader range of associated partners, including from the private sector. The aim of the project was to arrive at a deeper understanding of complex (mostly nonlinear) financial models and to develop effective and robust numerical schemes for solving linear and nonlinear problems arising from the mathematical theory of pricing financial derivatives and related financial products. This was accomplished by means of financial modelling, mathematical analysis and numerical simulations, optimal control techniques and validation of models. In recent years the computational complexity of mathematical models employed in financial mathematics has witnessed tremendous growth. Advanced numerical techniques are now essential to the majority of present-day applications in the financial industry. Special attention is devoted to a uniform methodology for both testing the latest achievements and simultaneously educating young PhD students. Most of the mathematical codes are linked into a novel computational finance toolbox, which is provided in MATLAB and PYTHON with an open access license. The book offers a valuable guide for researchers in computational finance and related areas, e.g. energy markets, with an interest in industrial mathematics.

Stochastic Models for Fractional Calculus

Stochastic Models for Fractional Calculus PDF Author: Mark M. Meerschaert
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110560240
Category : Mathematics
Languages : en
Pages : 337

Get Book Here

Book Description
Fractional calculus is a rapidly growing field of research, at the interface between probability, differential equations, and mathematical physics. It is used to model anomalous diffusion, in which a cloud of particles spreads in a different manner than traditional diffusion. This monograph develops the basic theory of fractional calculus and anomalous diffusion, from the point of view of probability. In this book, we will see how fractional calculus and anomalous diffusion can be understood at a deep and intuitive level, using ideas from probability. It covers basic limit theorems for random variables and random vectors with heavy tails. This includes regular variation, triangular arrays, infinitely divisible laws, random walks, and stochastic process convergence in the Skorokhod topology. The basic ideas of fractional calculus and anomalous diffusion are closely connected with heavy tail limit theorems. Heavy tails are applied in finance, insurance, physics, geophysics, cell biology, ecology, medicine, and computer engineering. The goal of this book is to prepare graduate students in probability for research in the area of fractional calculus, anomalous diffusion, and heavy tails. Many interesting problems in this area remain open. This book will guide the motivated reader to understand the essential background needed to read and unerstand current research papers, and to gain the insights and techniques needed to begin making their own contributions to this rapidly growing field.

PDE and Martingale Methods in Option Pricing

PDE and Martingale Methods in Option Pricing PDF Author: Andrea Pascucci
Publisher: Springer Science & Business Media
ISBN: 8847017815
Category : Mathematics
Languages : en
Pages : 727

Get Book Here

Book Description
This book offers an introduction to the mathematical, probabilistic and numerical methods used in the modern theory of option pricing. The text is designed for readers with a basic mathematical background. The first part contains a presentation of the arbitrage theory in discrete time. In the second part, the theories of stochastic calculus and parabolic PDEs are developed in detail and the classical arbitrage theory is analyzed in a Markovian setting by means of of PDEs techniques. After the martingale representation theorems and the Girsanov theory have been presented, arbitrage pricing is revisited in the martingale theory optics. General tools from PDE and martingale theories are also used in the analysis of volatility modeling. The book also contains an Introduction to Lévy processes and Malliavin calculus. The last part is devoted to the description of the numerical methods used in option pricing: Monte Carlo, binomial trees, finite differences and Fourier transform.

Numerical Methods and Applications

Numerical Methods and Applications PDF Author: Ivan Dimov
Publisher: Springer Science & Business Media
ISBN: 3642184650
Category : Computers
Languages : en
Pages : 524

Get Book Here

Book Description
This book constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Numerical Methods and Applications, NMA 2010, held in Borovets, Bulgaria, in August 2010. The 60 revised full papers presented together with 3 invited papers were carefully reviewed and selected from numerous submissions for inclusion in this book. The papers are organized in topical sections on Monte Carlo and quasi-Monte Carlo methods, environmental modeling, grid computing and applications, metaheuristics for optimization problems, and modeling and simulation of electrochemical processes.

Computational Sciences - Modelling, Computing and Soft Computing

Computational Sciences - Modelling, Computing and Soft Computing PDF Author: Ashish Awasthi
Publisher: Springer Nature
ISBN: 9811647720
Category : Computers
Languages : en
Pages : 271

Get Book Here

Book Description
This book constitutes revised and selected papers of the First International Conference on Computational Sciences - Modelling, Computing and Soft Computing, held in Kozhikode, Kerala, India, in September 2020. The 15 full papers and 6 short papers presented were thoroughly reviewed and selected from the 150 submissions. They are organized in the topical secions on computing; soft computing; general computing; modelling.