Author: Huey-Wen Lin
Publisher: Springer
ISBN: 3319080229
Category : Science
Languages : en
Pages : 255
Book Description
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spectroscopy and structure, many-body systems, together with more topical lectures in nuclear physics aimed a providing a broad phenomenological background. Exercises to encourage hands-on experience with parallel computing and data analysis are included.
Lattice QCD for Nuclear Physics
Author: Huey-Wen Lin
Publisher: Springer
ISBN: 3319080229
Category : Science
Languages : en
Pages : 255
Book Description
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spectroscopy and structure, many-body systems, together with more topical lectures in nuclear physics aimed a providing a broad phenomenological background. Exercises to encourage hands-on experience with parallel computing and data analysis are included.
Publisher: Springer
ISBN: 3319080229
Category : Science
Languages : en
Pages : 255
Book Description
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spectroscopy and structure, many-body systems, together with more topical lectures in nuclear physics aimed a providing a broad phenomenological background. Exercises to encourage hands-on experience with parallel computing and data analysis are included.
Lattice Methods for Quantum Chromodynamics
Author: Thomas DeGrand
Publisher: World Scientific
ISBN: 9812567275
Category : Science
Languages : en
Pages : 363
Book Description
At a time of robust worldwide debates on globalization, this compact volume shows: how successful each of the East Asian economies have been in harnessing globalization by appropriate and alternative means to catch up with the advanced economies; and what implications can be drawn to assess Chinese economic growth in context. The essays in this book include supporting notes to review effectively the highlights of the development of East Asia, over the six decades after World War II: why the region has performed so well economically relative to the rest of the developing world; which are the most challenging limitations to be addressed; and several sensational controversies in the development economics literature to be sensibly resolved.
Publisher: World Scientific
ISBN: 9812567275
Category : Science
Languages : en
Pages : 363
Book Description
At a time of robust worldwide debates on globalization, this compact volume shows: how successful each of the East Asian economies have been in harnessing globalization by appropriate and alternative means to catch up with the advanced economies; and what implications can be drawn to assess Chinese economic growth in context. The essays in this book include supporting notes to review effectively the highlights of the development of East Asia, over the six decades after World War II: why the region has performed so well economically relative to the rest of the developing world; which are the most challenging limitations to be addressed; and several sensational controversies in the development economics literature to be sensibly resolved.
An Advanced Course in Computational Nuclear Physics
Author: Morten Hjorth-Jensen
Publisher: Springer
ISBN: 3319533363
Category : Science
Languages : en
Pages : 654
Book Description
This graduate-level text collects and synthesizes a series of ten lectures on the nuclear quantum many-body problem. Starting from our current understanding of the underlying forces, it presents recent advances within the field of lattice quantum chromodynamics before going on to discuss effective field theories, central many-body methods like Monte Carlo methods, coupled cluster theories, the similarity renormalization group approach, Green’s function methods and large-scale diagonalization approaches. Algorithmic and computational advances show particular promise for breakthroughs in predictive power, including proper error estimates, a better understanding of the underlying effective degrees of freedom and of the respective forces at play. Enabled by recent improvements in theoretical, experimental and numerical techniques, the state-of-the art applications considered in this volume span the entire range, from our smallest components – quarks and gluons as the mediators of the strong force – to the computation of the equation of state for neutron star matter. The lectures presented provide an in-depth exposition of the underlying theoretical and algorithmic approaches as well details of the numerical implementation of the methods discussed. Several also include links to numerical software and benchmark calculations, which readers can use to develop their own programs for tackling challenging nuclear many-body problems.
Publisher: Springer
ISBN: 3319533363
Category : Science
Languages : en
Pages : 654
Book Description
This graduate-level text collects and synthesizes a series of ten lectures on the nuclear quantum many-body problem. Starting from our current understanding of the underlying forces, it presents recent advances within the field of lattice quantum chromodynamics before going on to discuss effective field theories, central many-body methods like Monte Carlo methods, coupled cluster theories, the similarity renormalization group approach, Green’s function methods and large-scale diagonalization approaches. Algorithmic and computational advances show particular promise for breakthroughs in predictive power, including proper error estimates, a better understanding of the underlying effective degrees of freedom and of the respective forces at play. Enabled by recent improvements in theoretical, experimental and numerical techniques, the state-of-the art applications considered in this volume span the entire range, from our smallest components – quarks and gluons as the mediators of the strong force – to the computation of the equation of state for neutron star matter. The lectures presented provide an in-depth exposition of the underlying theoretical and algorithmic approaches as well details of the numerical implementation of the methods discussed. Several also include links to numerical software and benchmark calculations, which readers can use to develop their own programs for tackling challenging nuclear many-body problems.
Modern Perspectives in Lattice QCD: Quantum Field Theory and High Performance Computing
Author: Laurent Lellouch
Publisher: Oxford University Press
ISBN: 0199691606
Category : Mathematics
Languages : en
Pages : 756
Book Description
The aim of the book is to familiarize the new generation of PhD students and postdoctoral fellows with the principles and methods of modern lattice field theory, which aims to resolve fundamental, non-perturbative questions about QCD without uncontrolled approximations.
Publisher: Oxford University Press
ISBN: 0199691606
Category : Mathematics
Languages : en
Pages : 756
Book Description
The aim of the book is to familiarize the new generation of PhD students and postdoctoral fellows with the principles and methods of modern lattice field theory, which aims to resolve fundamental, non-perturbative questions about QCD without uncontrolled approximations.
Particle Physics Reference Library
Author: Herwig Schopper
Publisher: Springer Nature
ISBN: 3030382079
Category : Heavy ions
Languages : en
Pages : 632
Book Description
This first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavy-ion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
Publisher: Springer Nature
ISBN: 3030382079
Category : Heavy ions
Languages : en
Pages : 632
Book Description
This first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavy-ion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
Modern Nuclear Physics
Author: Alexandre Obertelli
Publisher: Springer Nature
ISBN: 9811622892
Category : Science
Languages : en
Pages : 739
Book Description
This textbook is a unique and ambitious primer of nuclear physics, which introduces recent theoretical and experimental progresses starting from basics in fundamental quantum mechanics. The highlight is to offer an overview of nuclear structure phenomena relevant to recent key findings such as unstable halo nuclei, superheavy elements, neutron stars, nucleosynthesis, the standard model, lattice quantum chromodynamics (LQCD), and chiral effective theory. An additional attraction is that general properties of nuclei are comprehensively explained from both the theoretical and experimental viewpoints. The book begins with the conceptual and mathematical basics of quantum mechanics, and goes into the main point of nuclear physics – nuclear structure, radioactive ion beam physics, and nuclear reactions. The last chapters devote interdisciplinary topics in association with astrophysics and particle physics. A number of illustrations and exercises with complete solutions are given. Each chapter is comprehensively written starting from fundamentals to gradually reach modern aspects of nuclear physics with the objective to provide an effective description of the cutting edge in the field.
Publisher: Springer Nature
ISBN: 9811622892
Category : Science
Languages : en
Pages : 739
Book Description
This textbook is a unique and ambitious primer of nuclear physics, which introduces recent theoretical and experimental progresses starting from basics in fundamental quantum mechanics. The highlight is to offer an overview of nuclear structure phenomena relevant to recent key findings such as unstable halo nuclei, superheavy elements, neutron stars, nucleosynthesis, the standard model, lattice quantum chromodynamics (LQCD), and chiral effective theory. An additional attraction is that general properties of nuclei are comprehensively explained from both the theoretical and experimental viewpoints. The book begins with the conceptual and mathematical basics of quantum mechanics, and goes into the main point of nuclear physics – nuclear structure, radioactive ion beam physics, and nuclear reactions. The last chapters devote interdisciplinary topics in association with astrophysics and particle physics. A number of illustrations and exercises with complete solutions are given. Each chapter is comprehensively written starting from fundamentals to gradually reach modern aspects of nuclear physics with the objective to provide an effective description of the cutting edge in the field.
The Deconfinement Transition of QCD
Author: Claudia Ratti
Publisher: Springer Nature
ISBN: 3030672352
Category : Science
Languages : en
Pages : 224
Book Description
In the last few years, numerical simulations of QCD on the lattice have reached a new level of accuracy. A wide range of thermodynamic quantities is now available in the continuum limit and for physical quark masses. This allows a comparison with measurements from heavy ion collisions for the first time. Furthermore, calculations of dynamical quantities are also becoming available. The combined effort from first principles and experiment allows to gain an unprecedented understanding of the properties of quark-gluon plasma. This concise text, geared towards postgraduate students and newcomers to the field, carefully introduces and reviews the state-of-the-art techniques and results from lattice simulations and connects them to the experimental information from RHIC and the LHC.
Publisher: Springer Nature
ISBN: 3030672352
Category : Science
Languages : en
Pages : 224
Book Description
In the last few years, numerical simulations of QCD on the lattice have reached a new level of accuracy. A wide range of thermodynamic quantities is now available in the continuum limit and for physical quark masses. This allows a comparison with measurements from heavy ion collisions for the first time. Furthermore, calculations of dynamical quantities are also becoming available. The combined effort from first principles and experiment allows to gain an unprecedented understanding of the properties of quark-gluon plasma. This concise text, geared towards postgraduate students and newcomers to the field, carefully introduces and reviews the state-of-the-art techniques and results from lattice simulations and connects them to the experimental information from RHIC and the LHC.
Geometrical Relationships of Macroscopic Nuclear Physics
Author: Rainer W. Hasse
Publisher: Springer Science & Business Media
ISBN: 364283017X
Category : Science
Languages : en
Pages : 148
Book Description
The aim of this book is to provide a single reference source for the wealth of geometrical formulae and relationships that have proven useful in the descrip tion of atomic nuclei and nuclear processes. While many of the sections may be useful to students and instructors it is not a text book but rather a reference book for experimentalists and theoreticians working in this field. In addition the authors have avoided critical assessment of the material presented except, of course, by variations in emphasis. The whole field of macroscopic (or Liquid Drop Model) nuclear physics has its origins in such early works as [Weizsacker 35] and [Bohr 39]. It continued to grow because of its success in explaining collective nuclear excitations [Bohr 52] and fission (see the series of papers culminating in [Cohen 62]). These develop ments correspond to the first maximum in the histogram below, showing the distribution by year of the articles cited in our Bibliography. After the Liquid Drop Model had been worked out in some detail the development of the Struti nsky approach [Strutinsky 68] (which associates single particle contributions to the binding energy with the shape of the nucleus) gave new life to the field. The growth of interest in heavy-ion reaction studies has also contributed.
Publisher: Springer Science & Business Media
ISBN: 364283017X
Category : Science
Languages : en
Pages : 148
Book Description
The aim of this book is to provide a single reference source for the wealth of geometrical formulae and relationships that have proven useful in the descrip tion of atomic nuclei and nuclear processes. While many of the sections may be useful to students and instructors it is not a text book but rather a reference book for experimentalists and theoreticians working in this field. In addition the authors have avoided critical assessment of the material presented except, of course, by variations in emphasis. The whole field of macroscopic (or Liquid Drop Model) nuclear physics has its origins in such early works as [Weizsacker 35] and [Bohr 39]. It continued to grow because of its success in explaining collective nuclear excitations [Bohr 52] and fission (see the series of papers culminating in [Cohen 62]). These develop ments correspond to the first maximum in the histogram below, showing the distribution by year of the articles cited in our Bibliography. After the Liquid Drop Model had been worked out in some detail the development of the Struti nsky approach [Strutinsky 68] (which associates single particle contributions to the binding energy with the shape of the nucleus) gave new life to the field. The growth of interest in heavy-ion reaction studies has also contributed.
Quantum Fields on a Lattice
Author: Istvan Montvay
Publisher: Cambridge University Press
ISBN: 9780521599177
Category : Mathematics
Languages : en
Pages : 512
Book Description
Presents a comprehensive and coherent account of the theory of quantum fields on a lattice.
Publisher: Cambridge University Press
ISBN: 9780521599177
Category : Mathematics
Languages : en
Pages : 512
Book Description
Presents a comprehensive and coherent account of the theory of quantum fields on a lattice.
Introduction to Quantum Fields on a Lattice
Author: Jan Smit
Publisher: Cambridge University Press
ISBN: 0521890519
Category : Mathematics
Languages : en
Pages : 287
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 0521890519
Category : Mathematics
Languages : en
Pages : 287
Book Description
Publisher Description