Author: László Fuchs
Publisher: CRC Press
ISBN: 9780824773267
Category : Mathematics
Languages : en
Pages : 340
Book Description
This book initiates a systematic, in-depth study of Modules Over Valuation Domains. It introduces the theory of modules over commutative domains without finiteness conditions and examines frontiers of current research in modules over valuation domains. It represents a unique effort to combine ideas from abelian group theory, in a large scale, with powerful techniques developed in module theory. This volume surveys the background material on valuation rings, modules and homological algebra ... features new results for important classes of modules such as finitely generated, divisible, pure-injective, and projective dimension one -- never published before ... contains exercises and research problems -- offering guidance for independent and creative study ... and provides historical notes, comments, and an extensive bibliography. Mathematicians and advanced graduate-level mathematics students interested in module theory, abelian group theory, and commutative ring theory can stay abreast of the latest advances with Modules Over Valuation Domains. Book jacket.
Modules over Valuation Rings
Author: László Fuchs
Publisher: CRC Press
ISBN: 9780824773267
Category : Mathematics
Languages : en
Pages : 340
Book Description
This book initiates a systematic, in-depth study of Modules Over Valuation Domains. It introduces the theory of modules over commutative domains without finiteness conditions and examines frontiers of current research in modules over valuation domains. It represents a unique effort to combine ideas from abelian group theory, in a large scale, with powerful techniques developed in module theory. This volume surveys the background material on valuation rings, modules and homological algebra ... features new results for important classes of modules such as finitely generated, divisible, pure-injective, and projective dimension one -- never published before ... contains exercises and research problems -- offering guidance for independent and creative study ... and provides historical notes, comments, and an extensive bibliography. Mathematicians and advanced graduate-level mathematics students interested in module theory, abelian group theory, and commutative ring theory can stay abreast of the latest advances with Modules Over Valuation Domains. Book jacket.
Publisher: CRC Press
ISBN: 9780824773267
Category : Mathematics
Languages : en
Pages : 340
Book Description
This book initiates a systematic, in-depth study of Modules Over Valuation Domains. It introduces the theory of modules over commutative domains without finiteness conditions and examines frontiers of current research in modules over valuation domains. It represents a unique effort to combine ideas from abelian group theory, in a large scale, with powerful techniques developed in module theory. This volume surveys the background material on valuation rings, modules and homological algebra ... features new results for important classes of modules such as finitely generated, divisible, pure-injective, and projective dimension one -- never published before ... contains exercises and research problems -- offering guidance for independent and creative study ... and provides historical notes, comments, and an extensive bibliography. Mathematicians and advanced graduate-level mathematics students interested in module theory, abelian group theory, and commutative ring theory can stay abreast of the latest advances with Modules Over Valuation Domains. Book jacket.
Modules Over Discrete Valuation Domains
Author: Piotr A. Krylov
Publisher: Walter de Gruyter
ISBN: 9783110200539
Category : Mathematics
Languages : en
Pages : 376
Book Description
"In this book, modules over a specific class of rings, the discrete valuations domains, are considered. Such modules call for a special consideration, since they have specific properties and play an important role in various areas of algebra, especially of commutative algebra. The text is accompanied by exercises, historical remarks, links to related fields and open problems. It is useful for students, graduates studying algebra, young researchers, and experts."--BOOK JACKET.
Publisher: Walter de Gruyter
ISBN: 9783110200539
Category : Mathematics
Languages : en
Pages : 376
Book Description
"In this book, modules over a specific class of rings, the discrete valuations domains, are considered. Such modules call for a special consideration, since they have specific properties and play an important role in various areas of algebra, especially of commutative algebra. The text is accompanied by exercises, historical remarks, links to related fields and open problems. It is useful for students, graduates studying algebra, young researchers, and experts."--BOOK JACKET.
Modules over Discrete Valuation Rings
Author: Piotr A. Krylov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110611147
Category : Mathematics
Languages : en
Pages : 338
Book Description
This book provides the first systematic treatment of modules over discrete valuation domains, which play an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text along with interesting open problems. This updated edition presents new approaches on p-adic integers and modules, and on the determinability of a module by its automorphism group. Contents Preliminaries Basic facts Endomorphism rings of divisible and complete modules Representation of rings by endomorphism rings Torsion-free modules Mixed modules Determinity of modules by their endomorphism rings Modules with many endomorphisms or automorphisms
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110611147
Category : Mathematics
Languages : en
Pages : 338
Book Description
This book provides the first systematic treatment of modules over discrete valuation domains, which play an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text along with interesting open problems. This updated edition presents new approaches on p-adic integers and modules, and on the determinability of a module by its automorphism group. Contents Preliminaries Basic facts Endomorphism rings of divisible and complete modules Representation of rings by endomorphism rings Torsion-free modules Mixed modules Determinity of modules by their endomorphism rings Modules with many endomorphisms or automorphisms
Integral Closure of Ideals, Rings, and Modules
Author: Craig Huneke
Publisher: Cambridge University Press
ISBN: 0521688604
Category : Mathematics
Languages : en
Pages : 446
Book Description
Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
Publisher: Cambridge University Press
ISBN: 0521688604
Category : Mathematics
Languages : en
Pages : 446
Book Description
Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
Modules over Non-Noetherian Domains
Author: László Fuchs
Publisher: American Mathematical Soc.
ISBN: 0821819631
Category : Mathematics
Languages : en
Pages : 633
Book Description
In this book, the authors present both traditional and modern discoveries in the subject area, concentrating on advanced aspects of the topic. Existing material is studied in detail, including finitely generated modules, projective and injective modules, and the theory of torsion and torsion-free modules. Some topics are treated from a new point of view. Also included are areas not found in current texts, for example, pure-injectivity, divisible modules, uniserial modules, etc. Special emphasis is given to results that are valid over arbitrary domains. The authors concentrate on modules over valuation and Prüfer domains, but also discuss Krull and Matlis domains, h-local, reflexive, and coherent domains. The volume can serve as a standard reference book for specialists working in the area and also is a suitable text for advanced-graduate algebra courses and seminars.
Publisher: American Mathematical Soc.
ISBN: 0821819631
Category : Mathematics
Languages : en
Pages : 633
Book Description
In this book, the authors present both traditional and modern discoveries in the subject area, concentrating on advanced aspects of the topic. Existing material is studied in detail, including finitely generated modules, projective and injective modules, and the theory of torsion and torsion-free modules. Some topics are treated from a new point of view. Also included are areas not found in current texts, for example, pure-injectivity, divisible modules, uniserial modules, etc. Special emphasis is given to results that are valid over arbitrary domains. The authors concentrate on modules over valuation and Prüfer domains, but also discuss Krull and Matlis domains, h-local, reflexive, and coherent domains. The volume can serve as a standard reference book for specialists working in the area and also is a suitable text for advanced-graduate algebra courses and seminars.
Representation Theory, Group Rings, and Coding Theory
Author: M. Isaacs
Publisher: American Mathematical Soc.
ISBN: 0821850989
Category : Computers
Languages : en
Pages : 392
Book Description
Dedicated to the memory of the Soviet mathematician S D Berman (1922-1987), this work covers topics including Berman's achievements in coding theory, including his pioneering work on abelian codes and his results on the theory of threshold functions.
Publisher: American Mathematical Soc.
ISBN: 0821850989
Category : Computers
Languages : en
Pages : 392
Book Description
Dedicated to the memory of the Soviet mathematician S D Berman (1922-1987), this work covers topics including Berman's achievements in coding theory, including his pioneering work on abelian codes and his results on the theory of threshold functions.
Foundations of Commutative Rings and Their Modules
Author: Fanggui Wang
Publisher: Springer
ISBN: 9811033374
Category : Mathematics
Languages : en
Pages : 714
Book Description
This book provides an introduction to the basics and recent developments of commutative algebra. A glance at the contents of the first five chapters shows that the topics covered are ones that usually are included in any commutative algebra text. However, the contents of this book differ significantly from most commutative algebra texts: namely, its treatment of the Dedekind–Mertens formula, the (small) finitistic dimension of a ring, Gorenstein rings, valuation overrings and the valuative dimension, and Nagata rings. Going further, Chapter 6 presents w-modules over commutative rings as they can be most commonly used by torsion theory and multiplicative ideal theory. Chapter 7 deals with multiplicative ideal theory over integral domains. Chapter 8 collects various results of the pullbacks, especially Milnor squares and D+M constructions, which are probably the most important example-generating machines. In Chapter 9, coherent rings with finite weak global dimensions are probed, and the local ring of weak global dimension two is elaborated on by combining homological tricks and methods of star operation theory. Chapter 10 is devoted to the Grothendieck group of a commutative ring. In particular, the Bass–Quillen problem is discussed. Finally, Chapter 11 aims to introduce relative homological algebra, especially where the related concepts of integral domains which appear in classical ideal theory are defined and investigated by using the class of Gorenstein projective modules. Each section of the book is followed by a selection of exercises of varying degrees of difficulty. This book will appeal to a wide readership from graduate students to academic researchers who are interested in studying commutative algebra.
Publisher: Springer
ISBN: 9811033374
Category : Mathematics
Languages : en
Pages : 714
Book Description
This book provides an introduction to the basics and recent developments of commutative algebra. A glance at the contents of the first five chapters shows that the topics covered are ones that usually are included in any commutative algebra text. However, the contents of this book differ significantly from most commutative algebra texts: namely, its treatment of the Dedekind–Mertens formula, the (small) finitistic dimension of a ring, Gorenstein rings, valuation overrings and the valuative dimension, and Nagata rings. Going further, Chapter 6 presents w-modules over commutative rings as they can be most commonly used by torsion theory and multiplicative ideal theory. Chapter 7 deals with multiplicative ideal theory over integral domains. Chapter 8 collects various results of the pullbacks, especially Milnor squares and D+M constructions, which are probably the most important example-generating machines. In Chapter 9, coherent rings with finite weak global dimensions are probed, and the local ring of weak global dimension two is elaborated on by combining homological tricks and methods of star operation theory. Chapter 10 is devoted to the Grothendieck group of a commutative ring. In particular, the Bass–Quillen problem is discussed. Finally, Chapter 11 aims to introduce relative homological algebra, especially where the related concepts of integral domains which appear in classical ideal theory are defined and investigated by using the class of Gorenstein projective modules. Each section of the book is followed by a selection of exercises of varying degrees of difficulty. This book will appeal to a wide readership from graduate students to academic researchers who are interested in studying commutative algebra.
Modules over Discrete Valuation Rings
Author: Piotr A. Krylov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110609851
Category : Mathematics
Languages : en
Pages : 397
Book Description
This book provides the first systematic treatment of modules over discrete valuation domains, which play an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text along with interesting open problems. This updated edition presents new approaches on p-adic integers and modules, and on the determinability of a module by its automorphism group. Contents Preliminaries Basic facts Endomorphism rings of divisible and complete modules Representation of rings by endomorphism rings Torsion-free modules Mixed modules Determinity of modules by their endomorphism rings Modules with many endomorphisms or automorphisms
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110609851
Category : Mathematics
Languages : en
Pages : 397
Book Description
This book provides the first systematic treatment of modules over discrete valuation domains, which play an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text along with interesting open problems. This updated edition presents new approaches on p-adic integers and modules, and on the determinability of a module by its automorphism group. Contents Preliminaries Basic facts Endomorphism rings of divisible and complete modules Representation of rings by endomorphism rings Torsion-free modules Mixed modules Determinity of modules by their endomorphism rings Modules with many endomorphisms or automorphisms
Abelian Group Theory
Author: D. Arnold
Publisher: Springer
ISBN: 3540370692
Category : Mathematics
Languages : en
Pages : 436
Book Description
Publisher: Springer
ISBN: 3540370692
Category : Mathematics
Languages : en
Pages : 436
Book Description
Introduction to [lambda]-trees
Author: Ian Chiswell
Publisher: World Scientific
ISBN: 9789812810533
Category : Mathematics
Languages : en
Pages : 336
Book Description
The theory of o-trees has its origin in the work of Lyndon on length functions in groups. The first definition of an R -tree was given by Tits in 1977. The importance of o-trees was established by Morgan and Shalen, who showed how to compactify a generalisation of Teichmller space for a finitely generated group using R -trees. In that work they were led to define the idea of a o-tree, where o is an arbitrary ordered abelian group. Since then there has been much progress in understanding the structure of groups acting on R -trees, notably Rips'' theorem on free actions. There has also been some progress for certain other ordered abelian groups o, including some interesting connections with model theory. Introduction to o-Trees will prove to be useful for mathematicians and research students in algebra and topology. Contents: o-Trees and Their Construction; Isometries of o-Trees; Aspects of Group Actions on o-Trees; Free Actions; Rips'' Theorem. Readership: Mathematicians and research students in algebra and topology."
Publisher: World Scientific
ISBN: 9789812810533
Category : Mathematics
Languages : en
Pages : 336
Book Description
The theory of o-trees has its origin in the work of Lyndon on length functions in groups. The first definition of an R -tree was given by Tits in 1977. The importance of o-trees was established by Morgan and Shalen, who showed how to compactify a generalisation of Teichmller space for a finitely generated group using R -trees. In that work they were led to define the idea of a o-tree, where o is an arbitrary ordered abelian group. Since then there has been much progress in understanding the structure of groups acting on R -trees, notably Rips'' theorem on free actions. There has also been some progress for certain other ordered abelian groups o, including some interesting connections with model theory. Introduction to o-Trees will prove to be useful for mathematicians and research students in algebra and topology. Contents: o-Trees and Their Construction; Isometries of o-Trees; Aspects of Group Actions on o-Trees; Free Actions; Rips'' Theorem. Readership: Mathematicians and research students in algebra and topology."