Modeling Stochastic Multiphase Flow in Porous Media

Modeling Stochastic Multiphase Flow in Porous Media PDF Author: Mingjie Chen
Publisher:
ISBN: 9780542612817
Category :
Languages : en
Pages : 258

Get Book Here

Book Description
We present a novel approach to modeling stochastic multiphase now problems, for example NAPL flow, in a heterogeneous subsurface medium with random soil properties. A stochastic numerical model for steady state and transient two-phase and three-phase flow in a random soil property field is developed using the Karhunen-Loeve Moment Equation (KLME) approach and is numerically implemented. An exponential model and van Genuchten model are adopted to define the constitutive relationship between phase relative permeability and capillary. The log-transformed intrinsic permeability, soil pore size distribution, and van Genuchten fitting parameter are assumed to be Gaussian random functions with a separable exponential covariance function. We demonstrate the validity of the proposed KLME model by favorably comparing up to second-order approximations to Monte Carlo simulations, which are considered "true" solutions. The significant computational efficiency of the KLME approach over Monte Carlo simulation is also illustrated.

Modeling Stochastic Multiphase Flow in Porous Media

Modeling Stochastic Multiphase Flow in Porous Media PDF Author: Mingjie Chen
Publisher:
ISBN: 9780542612817
Category :
Languages : en
Pages : 258

Get Book Here

Book Description
We present a novel approach to modeling stochastic multiphase now problems, for example NAPL flow, in a heterogeneous subsurface medium with random soil properties. A stochastic numerical model for steady state and transient two-phase and three-phase flow in a random soil property field is developed using the Karhunen-Loeve Moment Equation (KLME) approach and is numerically implemented. An exponential model and van Genuchten model are adopted to define the constitutive relationship between phase relative permeability and capillary. The log-transformed intrinsic permeability, soil pore size distribution, and van Genuchten fitting parameter are assumed to be Gaussian random functions with a separable exponential covariance function. We demonstrate the validity of the proposed KLME model by favorably comparing up to second-order approximations to Monte Carlo simulations, which are considered "true" solutions. The significant computational efficiency of the KLME approach over Monte Carlo simulation is also illustrated.

Upscaling Multiphase Flow in Porous Media

Upscaling Multiphase Flow in Porous Media PDF Author: D.B. Das
Publisher: Springer Science & Business Media
ISBN: 9781402035135
Category : Science
Languages : en
Pages : 276

Get Book Here

Book Description
This book provides concise, up-to-date and easy-to-follow information on certain aspects of an ever important research area: multiphase flow in porous media. This flow type is of great significance in many petroleum and environmental engineering problems, such as in secondary and tertiary oil recovery, subsurface remediation and CO2 sequestration. This book contains a collection of selected papers (all refereed) from a number of well-known experts on multiphase flow. The papers describe both recent and state-of-the-art modeling and experimental techniques for study of multiphase flow phenomena in porous media. Specifically, the book analyses three advanced topics: upscaling, pore-scale modeling, and dynamic effects in multiphase flow in porous media. This will be an invaluable reference for the development of new theories and computer-based modeling techniques for solving realistic multiphase flow problems. Part of this book has already been published in a journal. Audience This book will be of interest to academics, researchers and consultants working in the area of flow in porous media.

Computational Methods for Multiphase Flows in Porous Media

Computational Methods for Multiphase Flows in Porous Media PDF Author: Zhangxin Chen
Publisher: SIAM
ISBN: 9780898718942
Category : Finite element method
Languages : en
Pages : 556

Get Book Here

Book Description
Computational Methods for Multiphase Flows in Porous Media offers a fundamental and practical introduction to the use of computational methods, particularly finite element methods, in the simulation of fluid flows in porous media. It is the first book to cover a wide variety of flows, including single-phase, two-phase, black oil, volatile, compositional, nonisothermal, and chemical compositional flows in both ordinary porous and fractured porous media. In addition, a range of computational methods are used, and benchmark problems of nine comparative solution projects organized by the Society of Petroleum Engineers are presented for the first time in book form. The book reviews multiphase flow equations and computational methods to introduce basic terminologies and notation. A thorough discussion of practical aspects of the subjects is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Audience: this book can be used as a textbook for graduate or advanced undergraduate students in geology, petroleum engineering, and applied mathematics; as a reference book for professionals in these fields, as well as scientists working in the area of petroleum reservoir simulation; as a handbook for employees in the oil industry who need a basic understanding of modeling and computational method concepts; and by researchers in hydrology, environmental remediation, and some areas of biological tissue modeling. Calculus, physics, and some acquaintance with partial differential equations and simple matrix algebra are necessary prerequisites.

A Stochastic Model for Two-phase Flow in Heterogeneous Porous Media

A Stochastic Model for Two-phase Flow in Heterogeneous Porous Media PDF Author: Michael B. Butts
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Mathematical Modeling for Flow and Transport Through Porous Media

Mathematical Modeling for Flow and Transport Through Porous Media PDF Author: Gedeon Dagan
Publisher: Springer Science & Business Media
ISBN: 9780792316169
Category : Mathematics
Languages : en
Pages : 312

Get Book Here

Book Description
This book contains a selection of articles presented at an International Workshop on `Mathematical Modeling for Flow and Transport Through Porous Media'. The major topics of the meeting were free and moving boundary problems, structured media, multiphase flow, scale problems, stochastic aspects, parameter identification and optimization problems. The volume also represents a few contributions on the incorporation of chemical and biological processes in mathematical models for transport in porous media. The book is directed at researchers active in porous media, mathematical modeling, petroleum and geotechnical engineering and environmental sciences.

Multiphase Flow in Porous Media

Multiphase Flow in Porous Media PDF Author: P.M. Adler
Publisher: Springer Science & Business Media
ISBN: 9401723729
Category : Science
Languages : en
Pages : 196

Get Book Here

Book Description
The study of multiphase flow through porous media is undergoing intense development, mostly due to the recent introduction of new methods. After the profound changes induced by percolation in the eighties, attention is nowadays focused on the pore scale. The physical situation is complex and only recently have tools become available that allow significant progress to be made in the area. This volume on Multiphase Flow in Porous Media, which is also being published as a special issue of the journal Transport in Porous Media, contains contributions on the lattice-Boltzmann technique, the renormalization technique, and semi-phenomenological studies at the pore level. Attention is mostly focused on two- and three-phase flows. These techniques are of tremendous importance for the numerous applications of multiphase flows in oil fields, unsaturated soils, the chemical industry, and environmental sciences.

A Stochastic Differential Equation Approach to Multiphase Flow in Porous Media

A Stochastic Differential Equation Approach to Multiphase Flow in Porous Media PDF Author: David W. Dean
Publisher:
ISBN:
Category : Multiphase flow
Languages : en
Pages : 24

Get Book Here

Book Description


Computational Methods in Multiphase Flow IV

Computational Methods in Multiphase Flow IV PDF Author: A.A. Mammoli
Publisher: WIT Press
ISBN: 1845640799
Category : Science
Languages : en
Pages : 417

Get Book Here

Book Description
Fluid Dynamics is one of the most important topics of applied mathematics and physics. Together with complex flows and turbulence, multiphase flows remains one of the most challenging areas of computational mechanics, and even seemingly simple problems remain unsolved to date. Multiphase flows are found in all areas of technology, at all length scales and flow regimes. The fluids involved can be compressible or incompressible, linear or nonlinear. Because of the complexity of the problem, it is often essential to utilize advanced computational and experimental methods to solve the complex equations that describe them. Challenges in these simulations include nonlinear fluids, treating drop breakup and coalescence, characterizing phase structures, and many others.This volume brings together work presented at the Fourth International Conference on Computational and Experimental Methods in Multiphase and Complex Flows. Featured topics include: Suspensions; Bubble and Drop Dynamics; Flow in Porous Media; Interfaces; Turbulent Flow; Injectors and Nozzles; Particle Image Velocimetry; Macroscale Constitutive Models; Large Eddy Simulation; Finite Volumes; Interface Tracking Methods; Biological Flows; Environmental Multiphase Flow; Phase Changes and Stochastic Modelling.

Mathematical and Numerical Modeling in Porous Media

Mathematical and Numerical Modeling in Porous Media PDF Author: Martin A. Diaz Viera
Publisher: CRC Press
ISBN: 041566537X
Category : Mathematics
Languages : en
Pages : 372

Get Book Here

Book Description
Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete understanding of the physical processes involved in fluid flow and transport. This fact can be attributed to the complexity of the phenomena which include multicomponent fluids, multiphasic flow and rock-fluid interactions. Since its formulation in 1856, Darcy’s law has been generalized to describe multi-phase compressible fluid flow through anisotropic and heterogeneous porous and fractured rocks. Due to the scarcity of information, a high degree of uncertainty on the porous medium properties is commonly present. Contributions to the knowledge of modeling flow and transport, as well as to the characterization of porous media at field scale are of great relevance. This book addresses several of these issues, treated with a variety of methodologies grouped into four parts: I Fundamental concepts II Flow and transport III Statistical and stochastic characterization IV Waves The problems analyzed in this book cover diverse length scales that range from small rock samples to field-size porous formations. They belong to the most active areas of research in porous media with applications in geosciences developed by diverse authors. This book was written for a broad audience with a prior and basic knowledge of porous media. The book is addressed to a wide readership, and it will be useful not only as an authoritative textbook for undergraduate and graduate students but also as a reference source for professionals including geoscientists, hydrogeologists, geophysicists, engineers, applied mathematicians and others working on porous media.

Simulation of Flow in Porous Media

Simulation of Flow in Porous Media PDF Author: Peter Bastian
Publisher: Walter de Gruyter
ISBN: 3110282240
Category : Mathematics
Languages : en
Pages : 224

Get Book Here

Book Description
Subsurface flow problems are inherently multiscale in space due to the large variability of material properties and in time due to the coupling of many different physical processes, such as advection, diffusion, reaction and phase exchange. Subsurface flow models still need considerable development. For example, nonequilibrium effects, entrapped air, anomalous dispersion and hysteresis effects can still not be adequately described. Moreover, parameters of the models are diffcult to access and often uncertain. Computational issues in subsurface flows include the treatment of strong heterogeneities and anisotropies in the models, the effcient solution of transport-reaction problems with many species, treatment of multiphase-multicomponent flows and the coupling of subsurface flow models to surface flow models given by shallow water or Stokes equations. With respect to energy and the environment, in particular the modelling and simulation of radioactive waste management and sequestration of CO2 underground have gained high interest in the community in recent years. Both applications provide unique challenges ranging from modelling of clay materials to treating very large scale models with high-performance computing. This book brings together key numerical mathematicians whose interest is in the analysis and computation of multiscale subsurface flow and practitioners from engineering and industry whose interest is in the applications of these core problems.