Author: Willy Dörfler
Publisher: Springer Nature
ISBN: 3030471748
Category : Mathematics
Languages : en
Pages : 330
Book Description
Wave phenomena are ubiquitous in nature. Their mathematical modeling, simulation and analysis lead to fascinating and challenging problems in both analysis and numerical mathematics. These challenges and their impact on significant applications have inspired major results and methods about wave-type equations in both fields of mathematics. The Conference on Mathematics of Wave Phenomena 2018 held in Karlsruhe, Germany, was devoted to these topics and attracted internationally renowned experts from a broad range of fields. These conference proceedings present new ideas, results, and techniques from this exciting research area.
Mathematics of Wave Phenomena
Author: Willy Dörfler
Publisher: Springer Nature
ISBN: 3030471748
Category : Mathematics
Languages : en
Pages : 330
Book Description
Wave phenomena are ubiquitous in nature. Their mathematical modeling, simulation and analysis lead to fascinating and challenging problems in both analysis and numerical mathematics. These challenges and their impact on significant applications have inspired major results and methods about wave-type equations in both fields of mathematics. The Conference on Mathematics of Wave Phenomena 2018 held in Karlsruhe, Germany, was devoted to these topics and attracted internationally renowned experts from a broad range of fields. These conference proceedings present new ideas, results, and techniques from this exciting research area.
Publisher: Springer Nature
ISBN: 3030471748
Category : Mathematics
Languages : en
Pages : 330
Book Description
Wave phenomena are ubiquitous in nature. Their mathematical modeling, simulation and analysis lead to fascinating and challenging problems in both analysis and numerical mathematics. These challenges and their impact on significant applications have inspired major results and methods about wave-type equations in both fields of mathematics. The Conference on Mathematics of Wave Phenomena 2018 held in Karlsruhe, Germany, was devoted to these topics and attracted internationally renowned experts from a broad range of fields. These conference proceedings present new ideas, results, and techniques from this exciting research area.
Mixed Type Equations
Author: John Michael Rassias
Publisher:
ISBN:
Category : Boundary value problems
Languages : en
Pages : 320
Book Description
Publisher:
ISBN:
Category : Boundary value problems
Languages : en
Pages : 320
Book Description
Computational Aeroacoustics
Author: Christopher K. W. Tam
Publisher: Cambridge University Press
ISBN: 1139576569
Category : Technology & Engineering
Languages : en
Pages : 497
Book Description
Computational aeroacoustics (CAA) is a relatively new research area. CAA algorithms have developed rapidly and the methods have been applied in many areas of aeroacoustics. The objective of CAA is not simply to develop computational methods but also to use these methods to solve practical aeroacoustics problems and to perform numerical simulation of aeroacoustic phenomena. By analysing the simulation data, an investigator can determine noise generation mechanisms and sound propagation processes. This is both a textbook for graduate students and a reference for researchers in CAA and as such is self-contained. No prior knowledge of numerical methods for solving partial differential equations (PDEs) is needed, however, a general understanding of partial differential equations and basic numerical analysis is assumed. Exercises are included and are designed to be an integral part of the chapter content. In addition, sample computer programs are included to illustrate the implementation of the numerical algorithms.
Publisher: Cambridge University Press
ISBN: 1139576569
Category : Technology & Engineering
Languages : en
Pages : 497
Book Description
Computational aeroacoustics (CAA) is a relatively new research area. CAA algorithms have developed rapidly and the methods have been applied in many areas of aeroacoustics. The objective of CAA is not simply to develop computational methods but also to use these methods to solve practical aeroacoustics problems and to perform numerical simulation of aeroacoustic phenomena. By analysing the simulation data, an investigator can determine noise generation mechanisms and sound propagation processes. This is both a textbook for graduate students and a reference for researchers in CAA and as such is self-contained. No prior knowledge of numerical methods for solving partial differential equations (PDEs) is needed, however, a general understanding of partial differential equations and basic numerical analysis is assumed. Exercises are included and are designed to be an integral part of the chapter content. In addition, sample computer programs are included to illustrate the implementation of the numerical algorithms.
Fluid Dynamics at Interfaces
Author: Wei Shyy
Publisher: Cambridge University Press
ISBN: 9780521642668
Category : Science
Languages : en
Pages : 482
Book Description
In this book experts discuss research and applications in interfacial fluid dynamics.
Publisher: Cambridge University Press
ISBN: 9780521642668
Category : Science
Languages : en
Pages : 482
Book Description
In this book experts discuss research and applications in interfacial fluid dynamics.
Elastodynamics
Author: A.C. Eringen
Publisher: Рипол Классик
ISBN: 588501308X
Category : Science
Languages : en
Pages : 359
Book Description
From the inception of the theory of elasticity with Navier A821) and Cauchy A828), the dynamical problems of elasticity and the subject of wave propagations in elastic solids have been under intense study by a large number of workers. In fact the literature is so extensive that any desire to write accounts on the subject immediately induces discouragement on the part of a prospective author. For it is impossible to do justice to all aspects of this wide field in any one- or two-volume treatise. Perhaps, partially, it is this concern that kept this important field barren of books for nearly two centuries.
Publisher: Рипол Классик
ISBN: 588501308X
Category : Science
Languages : en
Pages : 359
Book Description
From the inception of the theory of elasticity with Navier A821) and Cauchy A828), the dynamical problems of elasticity and the subject of wave propagations in elastic solids have been under intense study by a large number of workers. In fact the literature is so extensive that any desire to write accounts on the subject immediately induces discouragement on the part of a prospective author. For it is impossible to do justice to all aspects of this wide field in any one- or two-volume treatise. Perhaps, partially, it is this concern that kept this important field barren of books for nearly two centuries.
A Tutorial on Elliptic PDE Solvers and Their Parallelization
Author: Craig C. Douglas
Publisher: SIAM
ISBN: 9780898718171
Category : Technology & Engineering
Languages : en
Pages : 153
Book Description
This compact yet thorough tutorial is the perfect introduction to the basic concepts of solving partial differential equations (PDEs) using parallel numerical methods. In just eight short chapters, the authors provide readers with enough basic knowledge of PDEs, discretization methods, solution techniques, parallel computers, parallel programming, and the run-time behavior of parallel algorithms to allow them to understand, develop, and implement parallel PDE solvers. Examples throughout the book are intentionally kept simple so that the parallelization strategies are not dominated by technical details.
Publisher: SIAM
ISBN: 9780898718171
Category : Technology & Engineering
Languages : en
Pages : 153
Book Description
This compact yet thorough tutorial is the perfect introduction to the basic concepts of solving partial differential equations (PDEs) using parallel numerical methods. In just eight short chapters, the authors provide readers with enough basic knowledge of PDEs, discretization methods, solution techniques, parallel computers, parallel programming, and the run-time behavior of parallel algorithms to allow them to understand, develop, and implement parallel PDE solvers. Examples throughout the book are intentionally kept simple so that the parallelization strategies are not dominated by technical details.
An Introduction to Domain Decomposition Methods
Author: Victorita Dolean
Publisher: SIAM
ISBN: 1611974054
Category : Science
Languages : en
Pages : 242
Book Description
The purpose of this book is to offer an overview of the most popular domain decomposition methods for partial differential equations (PDEs). These methods are widely used for numerical simulations in solid mechanics, electromagnetism, flow in porous media, etc., on parallel machines from tens to hundreds of thousands of cores. The appealing feature of domain decomposition methods is that, contrary to direct methods, they are naturally parallel. The authors focus on parallel linear solvers. The authors present all popular algorithms, both at the PDE level and at the discrete level in terms of matrices, along with systematic scripts for sequential implementation in a free open-source finite element package as well as some parallel scripts. Also included is a new coarse space construction (two-level method) that adapts to highly heterogeneous problems.?
Publisher: SIAM
ISBN: 1611974054
Category : Science
Languages : en
Pages : 242
Book Description
The purpose of this book is to offer an overview of the most popular domain decomposition methods for partial differential equations (PDEs). These methods are widely used for numerical simulations in solid mechanics, electromagnetism, flow in porous media, etc., on parallel machines from tens to hundreds of thousands of cores. The appealing feature of domain decomposition methods is that, contrary to direct methods, they are naturally parallel. The authors focus on parallel linear solvers. The authors present all popular algorithms, both at the PDE level and at the discrete level in terms of matrices, along with systematic scripts for sequential implementation in a free open-source finite element package as well as some parallel scripts. Also included is a new coarse space construction (two-level method) that adapts to highly heterogeneous problems.?
Mathematical Optics
Author: Vasudevan Lakshminarayanan
Publisher: CRC Press
ISBN: 143986960X
Category : Science
Languages : en
Pages : 632
Book Description
Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical waveguides. Part II explores solutions to paraxial, linear, and nonlinear wave equations. Part III discusses cutting-edge areas in transformation optics (such as invisibility cloaks) and computational plasmonics. Part IV uses Lorentz groups, dihedral group symmetry, Lie algebras, and Liouville space to analyze problems in polarization, ray optics, visual optics, and quantum optics. Part V examines the role of coherence functions in modern laser physics and explains how to apply quantum memory channel models in quantum computers. Part VI introduces super-resolution imaging and differential geometric methods in image processing. As numerical/symbolic computation is an important tool for solving numerous real-life problems in optical science, many chapters include Mathematica® code in their appendices. The software codes and notebooks as well as color versions of the book’s figures are available at www.crcpress.com.
Publisher: CRC Press
ISBN: 143986960X
Category : Science
Languages : en
Pages : 632
Book Description
Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical waveguides. Part II explores solutions to paraxial, linear, and nonlinear wave equations. Part III discusses cutting-edge areas in transformation optics (such as invisibility cloaks) and computational plasmonics. Part IV uses Lorentz groups, dihedral group symmetry, Lie algebras, and Liouville space to analyze problems in polarization, ray optics, visual optics, and quantum optics. Part V examines the role of coherence functions in modern laser physics and explains how to apply quantum memory channel models in quantum computers. Part VI introduces super-resolution imaging and differential geometric methods in image processing. As numerical/symbolic computation is an important tool for solving numerous real-life problems in optical science, many chapters include Mathematica® code in their appendices. The software codes and notebooks as well as color versions of the book’s figures are available at www.crcpress.com.
Concentration Compactness for Critical Wave Maps
Author: Joachim Krieger
Publisher: European Mathematical Society
ISBN: 9783037191064
Category : Mathematics
Languages : en
Pages : 494
Book Description
Wave maps are the simplest wave equations taking their values in a Riemannian manifold $(M,g)$. Their Lagrangian is the same as for the scalar equation, the only difference being that lengths are measured with respect to the metric $g$. By Noether's theorem, symmetries of the Lagrangian imply conservation laws for wave maps, such as conservation of energy. In coordinates, wave maps are given by a system of semilinear wave equations. Over the past 20 years important methods have emerged which address the problem of local and global wellposedness of this system. Due to weak dispersive effects, wave maps defined on Minkowski spaces of low dimensions, such as $\mathbb R^{2+1}_{t,x}$, present particular technical difficulties. This class of wave maps has the additional important feature of being energy critical, which refers to the fact that the energy scales exactly like the equation. Around 2000 Daniel Tataru and Terence Tao, building on earlier work of Klainerman-Machedon, proved that smooth data of small energy lead to global smooth solutions for wave maps from 2+1 dimensions into target manifolds satisfying some natural conditions. In contrast, for large data, singularities may occur in finite time for $M =\mathbb S^2$ as target. This monograph establishes that for $\mathbb H$ as target the wave map evolution of any smooth data exists globally as a smooth function. While the authors restrict themselves to the hyperbolic plane as target the implementation of the concentration-compactness method, the most challenging piece of this exposition, yields more detailed information on the solution. This monograph will be of interest to experts in nonlinear dispersive equations, in particular to those working on geometric evolution equations.
Publisher: European Mathematical Society
ISBN: 9783037191064
Category : Mathematics
Languages : en
Pages : 494
Book Description
Wave maps are the simplest wave equations taking their values in a Riemannian manifold $(M,g)$. Their Lagrangian is the same as for the scalar equation, the only difference being that lengths are measured with respect to the metric $g$. By Noether's theorem, symmetries of the Lagrangian imply conservation laws for wave maps, such as conservation of energy. In coordinates, wave maps are given by a system of semilinear wave equations. Over the past 20 years important methods have emerged which address the problem of local and global wellposedness of this system. Due to weak dispersive effects, wave maps defined on Minkowski spaces of low dimensions, such as $\mathbb R^{2+1}_{t,x}$, present particular technical difficulties. This class of wave maps has the additional important feature of being energy critical, which refers to the fact that the energy scales exactly like the equation. Around 2000 Daniel Tataru and Terence Tao, building on earlier work of Klainerman-Machedon, proved that smooth data of small energy lead to global smooth solutions for wave maps from 2+1 dimensions into target manifolds satisfying some natural conditions. In contrast, for large data, singularities may occur in finite time for $M =\mathbb S^2$ as target. This monograph establishes that for $\mathbb H$ as target the wave map evolution of any smooth data exists globally as a smooth function. While the authors restrict themselves to the hyperbolic plane as target the implementation of the concentration-compactness method, the most challenging piece of this exposition, yields more detailed information on the solution. This monograph will be of interest to experts in nonlinear dispersive equations, in particular to those working on geometric evolution equations.
Infinite Dimensional Dynamical Systems
Author: John Mallet-Paret
Publisher: Springer Science & Business Media
ISBN: 1461445221
Category : Mathematics
Languages : en
Pages : 495
Book Description
This collection covers a wide range of topics of infinite dimensional dynamical systems generated by parabolic partial differential equations, hyperbolic partial differential equations, solitary equations, lattice differential equations, delay differential equations, and stochastic differential equations. Infinite dimensional dynamical systems are generated by evolutionary equations describing the evolutions in time of systems whose status must be depicted in infinite dimensional phase spaces. Studying the long-term behaviors of such systems is important in our understanding of their spatiotemporal pattern formation and global continuation, and has been among major sources of motivation and applications of new developments of nonlinear analysis and other mathematical theories. Theories of the infinite dimensional dynamical systems have also found more and more important applications in physical, chemical, and life sciences. This book collects 19 papers from 48 invited lecturers to the International Conference on Infinite Dimensional Dynamical Systems held at York University, Toronto, in September of 2008. As the conference was dedicated to Professor George Sell from University of Minnesota on the occasion of his 70th birthday, this collection reflects the pioneering work and influence of Professor Sell in a few core areas of dynamical systems, including non-autonomous dynamical systems, skew-product flows, invariant manifolds theory, infinite dimensional dynamical systems, approximation dynamics, and fluid flows.
Publisher: Springer Science & Business Media
ISBN: 1461445221
Category : Mathematics
Languages : en
Pages : 495
Book Description
This collection covers a wide range of topics of infinite dimensional dynamical systems generated by parabolic partial differential equations, hyperbolic partial differential equations, solitary equations, lattice differential equations, delay differential equations, and stochastic differential equations. Infinite dimensional dynamical systems are generated by evolutionary equations describing the evolutions in time of systems whose status must be depicted in infinite dimensional phase spaces. Studying the long-term behaviors of such systems is important in our understanding of their spatiotemporal pattern formation and global continuation, and has been among major sources of motivation and applications of new developments of nonlinear analysis and other mathematical theories. Theories of the infinite dimensional dynamical systems have also found more and more important applications in physical, chemical, and life sciences. This book collects 19 papers from 48 invited lecturers to the International Conference on Infinite Dimensional Dynamical Systems held at York University, Toronto, in September of 2008. As the conference was dedicated to Professor George Sell from University of Minnesota on the occasion of his 70th birthday, this collection reflects the pioneering work and influence of Professor Sell in a few core areas of dynamical systems, including non-autonomous dynamical systems, skew-product flows, invariant manifolds theory, infinite dimensional dynamical systems, approximation dynamics, and fluid flows.