Metal Oxide-Carbon Hybrid Materials

Metal Oxide-Carbon Hybrid Materials PDF Author: Muhammad Akram Chaudhry
Publisher: Elsevier
ISBN: 0128227087
Category : Technology & Engineering
Languages : en
Pages : 590

Get Book Here

Book Description
Metal Oxide–Carbon Hybrid Materials: Synthesis, Properties and Applications reviews the advances in the fabrication and application of metal oxide–carbon-based nanocomposite materials. Their unique properties make them ideal materials for gas-sensing, photonics, catalysis, opto-electronic, and energy-storage applications. In the first section, the historical background to the hybrid materials based on metal oxide–carbon and the hybridized metal oxide composites is provided. It also highlights several popular methods for the preparation of metal oxide–carbon composites through solid-state or solution-phase reactions, and extensively discusses the materials' properties. Fossil fuels and renewable energy sources cannot meet the ever-increasing energy demands of an industrialized and technology-driven global society. Therefore, the role of metal oxide–carbon composites in energy generation, hydrogen production, and storage devices, such as rechargeable batteries and supercapacitors, is of extreme importance. These problems are discussed in in the second section of the book. Rapid industrialization has resulted in serious environmental issues which in turn have caused serious health problems that require the immediate attention of researchers. In the third section, the use of metal oxide–carbon composites in water purification, photodegradation of industrial contaminants, and biomedical applications that can help to clean the environment and provide better healthcare solutions is described. The final section is devoted to the consideration of problems associated with the development of sensors for various applications. Numerous studies performed in this area have shown that the use of composites can significantly improve the operating parameters of such devices. Metal Oxide–Carbon Hybrid Materials: Synthesis, Properties and Applications presents a comprehensive review of the science related to metal oxide–carbon composites and how researchers are utilizing these materials to provide solutions to a large array of problems. - Reviews the fundamental properties and fabrication methods of metal-oxide–carbon composites - Discusses applications in energy, including energy generation, hydrogen production and storage, rechargeable batteries, and supercapacitors - Includes current and emerging applications in environmental remediation and sensing

Metal Oxides in Supercapacitors

Metal Oxides in Supercapacitors PDF Author: Deepak P. Dubal
Publisher: Elsevier
ISBN: 0128104651
Category : Technology & Engineering
Languages : en
Pages : 294

Get Book Here

Book Description
Metal Oxides in Supercapacitors addresses the fundamentals of metal oxide-based supercapacitors and provides an overview of recent advancements in this area. Metal oxides attract most of the materials scientists use due to their excellent physico-chemical properties and stability in electrochemical systems. This justification for the usage of metal oxides as electrode materials in supercapacitors is their potential to attain high capacitance at low cost. After providing the principles, the heart of the book discusses recent advances, including: binary metal oxides-based supercapacitors, nanotechnology, ternary metal oxides, polyoxometalates and hybrids. Moreover, the factors affecting the charge storage mechanism of metal oxides are explored in detail. The electrolytes, which are the soul of supercapacitors and a mostly ignored character of investigations, are also exposed in depth, as is the fabrication and design of supercapacitors and their merits and demerits. Lastly, the market status of supercapacitors and a discussion pointing out the future scope and directions of next generation metal oxides based supercapacitors is explored, making this a comprehensive book on the latest, cutting-edge research in the field. - Explores the most recent advances made in metal oxides in supercapacitors - Discusses cutting-edge nanotechnology for supercapacitors - Includes fundamental properties of metal oxides in supercapacitors that can be used to guide and promote technology development - Contains contributions from leading international scientists active in supercapacitor research and manufacturing

Metal-Organic Frameworks-Based Hybrid Materials for Environmental Sensing and Monitoring

Metal-Organic Frameworks-Based Hybrid Materials for Environmental Sensing and Monitoring PDF Author: Ram K. Gupta
Publisher: CRC Press
ISBN: 1000569128
Category : Technology & Engineering
Languages : en
Pages : 349

Get Book Here

Book Description
With an unprecedented population boom and rapid industrial development, environmental pollution has become a severe problem for the ecosystem and public health. Classical techniques for sensing and determining environmental contaminants often require complex pretreatments, expensive equipment, and longer testing times. Therefore, new, and state-of-the-art sensing technologies possessing the advantages of excellent sensitivity, rapid detection, ease of use, and suitability for in situ, real-time, and continuous monitoring of environmental pollutants, are highly desirable. Metal-Organic Frameworks-based Hybrid Materials for Environmental Sensing and Monitoring covers the current-state-of-the-art hybrid nanomaterials based on metal-organic frameworks for electrochemical monitoring purposes. Accomplished authors cover various synthetic routes, methods, and theories behind enhancing the electrochemical properties and applications of metal-organic frameworks-based hybrid nanomaterials for electrochemical sensing of environmental pollutants under one roof. This book is essential reading for all academic and industrial researchers working in the fields of materials science and nanotechnology.

Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion

Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion PDF Author: Rajib Paul
Publisher: Elsevier
ISBN: 0128140844
Category : Science
Languages : en
Pages : 464

Get Book Here

Book Description
Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion presents a comprehensive overview of recent theoretical and experimental developments and prospects on carbon-based nanomaterials for thermal, solar and electrochemical energy conversion, along with their storage applications for both laboratory and industrial perspectives. Large growth in human populations has led to seminal growth in global energy consumption, hence fossil fuel usage has increased, as have unwanted greenhouse gases, including carbon dioxide, which results in critical environmental concerns. This book discusses this growing problem, aligning carbon nanomaterials as a solution because of their structural diversity and electronic, thermal and mechanical properties. - Provides an overview on state-of-the-art carbon nanomaterials and key requirements for applications of carbon materials towards efficient energy storage and conversion - Presents an updated and comprehensive review of recent work and the theoretical aspects on electrochemistry - Includes discussions on the industrial production of carbon-based materials for energy applications, along with insights from industrial experts

Metal Oxide Nanocomposites

Metal Oxide Nanocomposites PDF Author: B. Raneesh
Publisher: John Wiley & Sons
ISBN: 1119363578
Category : Technology & Engineering
Languages : en
Pages : 432

Get Book Here

Book Description
Metal Oxide Nanocomposites: Synthesis and Applications summarizes many of the recent research accomplishments in the area of metal oxide-based nanocomposites. This book focussing on the following topics: Nanocomposites preparation and characterization of metal oxide nanocomposites; synthesis of core/shell metal oxide nanocomposites; multilayer thin films; sequential assembly of nanocomposite materials; semiconducting polymer metal oxide nanocomposites; graphene-based metal and metal oxide nanocomposites; carbon nanotube–metal–oxide nanocomposites; silicon mixed oxide nanocomposites; gas semiconducting sensors based on metal oxide nanocomposites; metal ]organic framework nanocomposite for hydrogen production and nanocomposites application towards photovoltaic and photocatalytic.

Magnetic Nanoparticle-Based Hybrid Materials

Magnetic Nanoparticle-Based Hybrid Materials PDF Author: Andrea Ehrmann
Publisher: Woodhead Publishing
ISBN: 0128236892
Category : Technology & Engineering
Languages : en
Pages : 761

Get Book Here

Book Description
Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications introduces the principles, properties, and emerging applications of this important materials system. The hybridization of magnetic nanoparticles with metals, metal oxides and semiconducting nanoparticles may result in superior properties. The book reviews the most relevant hybrid materials, their mechanisms and properties. Then, the book focuses on the rational design, controlled synthesis, advanced characterizations and in-depth understanding of structure-property relationships. The last part addresses the promising applications of hybrid nanomaterials in the real world such as in the environment, energy, medicine fields. Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications comprehensively reviews both the theoretical and experimental approaches used to rapidly advance nanomaterials that could result in new technologies that impact day-to-day life and society in key areas such as health and the environment. It is suitable for researchers and practitioners who are materials scientists and engineers, chemists or physicists in academia and R&D. - Provides in-depth information on the basic principles of magnetic nanoparticles-based hybrid materials such as synthesis, characterization, properties, and magnon interactions - Discusses the most relevant hybrid materials systems including integration of metals, metal oxides, polymers, carbon and more - Addresses the emerging applications in medicine, the environment, energy, sensing, and computing enabled by magnetic nanoparticles-based hybrid materials

Metal Oxide-Based Heterostructures

Metal Oxide-Based Heterostructures PDF Author: Naveen Kumar
Publisher: Elsevier
ISBN: 0323860176
Category : Technology & Engineering
Languages : en
Pages : 610

Get Book Here

Book Description
Metal Oxide–Based Heterostructures: Fabrication and Applications provides information on synthesis strategies, structural and hierarchical features, morphological characteristics of metal oxide–based heterostructures, and their diverse applications. This book begins with an introduction to the various multidimensional heterostructures, synthesis aspects, and techniques used to control the formation of heterostructures. Then, the impact of synthesis routes on the formation of mixed metal oxide heterostructures and their properties are analyzed. The effect of nonmetal doping, metal doping, and composites of metal oxide heterostructures on the properties of heterostructures is also addressed and that also includes opportunities for optimization of the material's performance for specific applications. Special attention is given to the surface characteristics of the metal oxide heterostructures and their impact on the material's performance, and the applications of metal oxide heterostructures in various fields such as environmental remediation, sensing, organic catalysis, photovoltaics, light emitting materials, and hydrogen production. - Introduces key principles for metal oxide heterostructures, their properties, key characteristics, and synthesis routes - Emphasizes the relationship between synthesis strategies and material performance, including optimization strategies such as tailoring the material's surface characteristics or structure - Discusses metal oxide heterostructures and their application in lighting and displays, energy, environment, and sensing

Metal Oxides for Non-volatile Memory

Metal Oxides for Non-volatile Memory PDF Author: Panagiotis Dimitrakis
Publisher: Elsevier
ISBN: 0128146303
Category : Technology & Engineering
Languages : en
Pages : 534

Get Book Here

Book Description
Metal Oxides for Non-volatile Memory: Materials, Technology and Applications covers the technology and applications of metal oxides (MOx) in non-volatile memory (NVM) technology. The book addresses all types of NVMs, including floating-gate memories, 3-D memories, charge-trapping memories, quantum-dot memories, resistance switching memories and memristors, Mott memories and transparent memories. Applications of MOx in DRAM technology where they play a crucial role to the DRAM evolution are also addressed. The book offers a broad scope, encompassing discussions of materials properties, deposition methods, design and fabrication, and circuit and system level applications of metal oxides to non-volatile memory. Finally, the book addresses one of the most promising materials that may lead to a solution to the challenges in chip size and capacity for memory technologies, particular for mobile applications and embedded systems. - Systematically covers metal oxides materials and their properties with memory technology applications, including floating-gate memory, 3-D memory, memristors, and much more - Provides an overview on the most relevant deposition methods, including sputtering, CVD, ALD and MBE - Discusses the design and fabrication of metal oxides for wide breadth of non-volatile memory applications from 3-D flash technology, transparent memory and DRAM technology

Graphene Oxide-Metal Oxide and other Graphene Oxide-Based Composites in Photocatalysis and Electrocatalysis

Graphene Oxide-Metal Oxide and other Graphene Oxide-Based Composites in Photocatalysis and Electrocatalysis PDF Author: Jiaguo Yu
Publisher: Elsevier
ISBN: 0323852882
Category : Technology & Engineering
Languages : en
Pages : 308

Get Book Here

Book Description
Graphene Oxide-Metal Oxide and other Graphene Oxide-Based Composites in Photocatalysis and Electrocatalysis reflects on recent progress and challenges in graphene-metal oxide composites. The book reviews synthetic strategies, characterization methods and applications in photocatalysis and electrocatalysis. Graphene-metal oxides, graphene-novel metals and other composites intended for sustainable energy production, energy storage, and environmental development such as H2 production, CO2 reduction, pollutant removal, supercapacitors and lithium ion batteries are covered. Overall, this book presents a comprehensive, systematic, and up-to-date summary on graphene oxide-based materials. Graphene oxide and related composite materials bring new perspectives and prospects to both photocatalysts and electrocatalysts. The collective and synergistic effect between graphene oxide and metal oxide are manifold. The significance of the relationship among these groups of materials, their structures and performance is emphasized. - Introduces the fundamentals of graphene oxides, their derivatives, common processes, principles and requirements for photocatalysis and electrocatalysis - Reviews graphene-oxides for photocatalysis applications in H2 production, CO2 reduction, environment remediation, and more - Covers graphene-oxides for electrocatalysis applications in energy, including supercapacitors and lithium-ion batteries

Energy from Waste

Energy from Waste PDF Author: Ram K. Gupta
Publisher: CRC Press
ISBN: 1000551334
Category : Science
Languages : en
Pages : 499

Get Book Here

Book Description
Conversion of waste into value-added products such as energy transforms a potential environmental problem into a sustainable solution. Energy from Waste: Production and Storage focuses on the conversion of waste from various sources for use in energy production and storage applications. It provides the state-of-the-art in developing advanced materials and chemicals for energy applications using wastes and discusses the various treatment processes and technologies. Covers synthesis of usable materials from various types of waste and their application in energy production and storage Presents an overview and applications of wastes for green energy production and storage Provides fundamentals of electrochemical behavior and understanding of energy devices such as fuel cells, batteries, supercapacitors, and solar cells Elaborates on advanced technologies used to convert waste into green biochemical energy This work provides new direction to scientists, researchers, and students in materials and chemical engineering and related subjects seeking to sustainable solutions to energy production and waste management.