Author: Journal of Nonlinear Science
Publisher: Springer Science & Business Media
ISBN: 1461212464
Category : Science
Languages : en
Pages : 533
Book Description
Starting in 1996, a sequence of articles appeared in the Journal of Nonlinear Science dedicated to the memory of one of its original editors, Juan-Carlos Simo, Applied Me chanics, Stanford University. Sadly, Juan-Carlos passed away at an early age in 1994. We lost a brilliant colleague and a wonderful person. These articles are collected in the present volume. Many of them are updated and corrected especially for this occasion. These essays are in areas of scientific interest of Juan-Carlos, including mechanics (particles, rigid bodies, fluids, elasticity, plastic ity, etc.), geometry, applied dynamics, and, of course, computation. His interests were extremely broad-he did not see boundaries between computation, mathematics, me chanics, and dynamics, and, in that sense, he ideally reflected the spirit of the journal and many of the most exciting areas of current scientific interest. Juan-Carlos was one of those select and gifted people who could cross interdisci plinary boundaries with extremely high quality and productive interactions of lasting value. His contributions, ranging from concrete engineering problems to fundamental mathematical theorems in geometric mechanics, are remarkable. In current conferences as well as in scientific books and articles, and over a wide range of subjects, one frequently hears how his ideas as well as specific results are often used and quoted-this is one indication of just how profound and fundamental his work has impacted the community.
Mechanics: From Theory to Computation
Author: Journal of Nonlinear Science
Publisher: Springer Science & Business Media
ISBN: 1461212464
Category : Science
Languages : en
Pages : 533
Book Description
Starting in 1996, a sequence of articles appeared in the Journal of Nonlinear Science dedicated to the memory of one of its original editors, Juan-Carlos Simo, Applied Me chanics, Stanford University. Sadly, Juan-Carlos passed away at an early age in 1994. We lost a brilliant colleague and a wonderful person. These articles are collected in the present volume. Many of them are updated and corrected especially for this occasion. These essays are in areas of scientific interest of Juan-Carlos, including mechanics (particles, rigid bodies, fluids, elasticity, plastic ity, etc.), geometry, applied dynamics, and, of course, computation. His interests were extremely broad-he did not see boundaries between computation, mathematics, me chanics, and dynamics, and, in that sense, he ideally reflected the spirit of the journal and many of the most exciting areas of current scientific interest. Juan-Carlos was one of those select and gifted people who could cross interdisci plinary boundaries with extremely high quality and productive interactions of lasting value. His contributions, ranging from concrete engineering problems to fundamental mathematical theorems in geometric mechanics, are remarkable. In current conferences as well as in scientific books and articles, and over a wide range of subjects, one frequently hears how his ideas as well as specific results are often used and quoted-this is one indication of just how profound and fundamental his work has impacted the community.
Publisher: Springer Science & Business Media
ISBN: 1461212464
Category : Science
Languages : en
Pages : 533
Book Description
Starting in 1996, a sequence of articles appeared in the Journal of Nonlinear Science dedicated to the memory of one of its original editors, Juan-Carlos Simo, Applied Me chanics, Stanford University. Sadly, Juan-Carlos passed away at an early age in 1994. We lost a brilliant colleague and a wonderful person. These articles are collected in the present volume. Many of them are updated and corrected especially for this occasion. These essays are in areas of scientific interest of Juan-Carlos, including mechanics (particles, rigid bodies, fluids, elasticity, plastic ity, etc.), geometry, applied dynamics, and, of course, computation. His interests were extremely broad-he did not see boundaries between computation, mathematics, me chanics, and dynamics, and, in that sense, he ideally reflected the spirit of the journal and many of the most exciting areas of current scientific interest. Juan-Carlos was one of those select and gifted people who could cross interdisci plinary boundaries with extremely high quality and productive interactions of lasting value. His contributions, ranging from concrete engineering problems to fundamental mathematical theorems in geometric mechanics, are remarkable. In current conferences as well as in scientific books and articles, and over a wide range of subjects, one frequently hears how his ideas as well as specific results are often used and quoted-this is one indication of just how profound and fundamental his work has impacted the community.
Differential Equations, Mechanics, and Computation
Author: Richard S. Palais
Publisher: American Mathematical Soc.
ISBN: 0821821385
Category : Mathematics
Languages : en
Pages : 329
Book Description
This book provides a conceptual introduction to the theory of ordinary differential equations, concentrating on the initial value problem for equations of evolution and with applications to the calculus of variations and classical mechanics, along with a discussion of chaos theory and ecological models. It has a unified and visual introduction to the theory of numerical methods and a novel approach to the analysis of errors and stability of various numerical solution algorithms based on carefully chosen model problems. While the book would be suitable as a textbook for an undergraduate or elementary graduate course in ordinary differential equations, the authors have designed the text also to be useful for motivated students wishing to learn the material on their own or desiring to supplement an ODE textbook being used in a course they are taking with a text offering a more conceptual approach to the subject.
Publisher: American Mathematical Soc.
ISBN: 0821821385
Category : Mathematics
Languages : en
Pages : 329
Book Description
This book provides a conceptual introduction to the theory of ordinary differential equations, concentrating on the initial value problem for equations of evolution and with applications to the calculus of variations and classical mechanics, along with a discussion of chaos theory and ecological models. It has a unified and visual introduction to the theory of numerical methods and a novel approach to the analysis of errors and stability of various numerical solution algorithms based on carefully chosen model problems. While the book would be suitable as a textbook for an undergraduate or elementary graduate course in ordinary differential equations, the authors have designed the text also to be useful for motivated students wishing to learn the material on their own or desiring to supplement an ODE textbook being used in a course they are taking with a text offering a more conceptual approach to the subject.
Information, Physics, and Computation
Author: Marc Mézard
Publisher: Oxford University Press
ISBN: 019857083X
Category : Computers
Languages : en
Pages : 584
Book Description
A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.
Publisher: Oxford University Press
ISBN: 019857083X
Category : Computers
Languages : en
Pages : 584
Book Description
A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.
Computational Contact Mechanics
Author: Peter Wriggers
Publisher: Springer Science & Business Media
ISBN: 3211772987
Category : Science
Languages : en
Pages : 252
Book Description
Topics of this book span the range from spatial and temporal discretization techniques for contact and impact problems with small and finite deformations over investigations on the reliability of micromechanical contact models over emerging techniques for rolling contact mechanics to homogenization methods and multi-scale approaches in contact problems.
Publisher: Springer Science & Business Media
ISBN: 3211772987
Category : Science
Languages : en
Pages : 252
Book Description
Topics of this book span the range from spatial and temporal discretization techniques for contact and impact problems with small and finite deformations over investigations on the reliability of micromechanical contact models over emerging techniques for rolling contact mechanics to homogenization methods and multi-scale approaches in contact problems.
Computational Continuum Mechanics
Author: Ahmed A. Shabana
Publisher: Cambridge University Press
ISBN: 1139505424
Category : Science
Languages : en
Pages : 341
Book Description
This second edition presents the theory of continuum mechanics using computational methods. The text covers a broad range of topics including general problems of large rotation and large deformations and the development and limitations of finite element formulations in solving such problems. Dr Shabana introduces theories on motion kinematics, strain, forces and stresses and goes on to discuss linear and nonlinear constitutive equations, including viscoelastic and plastic constitutive models. General nonlinear continuum mechanics theory is used to develop small and large finite element formulations which correctly describe rigid body motion for use in engineering applications. This second edition features a new chapter that focuses on computational geometry and finite element analysis. This book is ideal for graduate and undergraduate students, professionals and researchers who are interested in continuum mechanics.
Publisher: Cambridge University Press
ISBN: 1139505424
Category : Science
Languages : en
Pages : 341
Book Description
This second edition presents the theory of continuum mechanics using computational methods. The text covers a broad range of topics including general problems of large rotation and large deformations and the development and limitations of finite element formulations in solving such problems. Dr Shabana introduces theories on motion kinematics, strain, forces and stresses and goes on to discuss linear and nonlinear constitutive equations, including viscoelastic and plastic constitutive models. General nonlinear continuum mechanics theory is used to develop small and large finite element formulations which correctly describe rigid body motion for use in engineering applications. This second edition features a new chapter that focuses on computational geometry and finite element analysis. This book is ideal for graduate and undergraduate students, professionals and researchers who are interested in continuum mechanics.
Introduction to the Theory of Computation
Author: Michael Sipser
Publisher: Cengage Learning
ISBN: 9781133187790
Category : Computers
Languages : en
Pages : 0
Book Description
Now you can clearly present even the most complex computational theory topics to your students with Sipser’s distinct, market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today’s computational theory course, this highly anticipated revision retains the unmatched clarity and thorough coverage that make it a leading text for upper-level undergraduate and introductory graduate students. This edition continues author Michael Sipser’s well-known, approachable style with timely revisions, additional exercises, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. This edition’s refined presentation ensures a trusted accuracy and clarity that make the challenging study of computational theory accessible and intuitive to students while maintaining the subject’s rigor and formalism. Readers gain a solid understanding of the fundamental mathematical properties of computer hardware, software, and applications with a blend of practical and philosophical coverage and mathematical treatments, including advanced theorems and proofs. INTRODUCTION TO THE THEORY OF COMPUTATION, 3E’s comprehensive coverage makes this an ideal ongoing reference tool for those studying theoretical computing. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Publisher: Cengage Learning
ISBN: 9781133187790
Category : Computers
Languages : en
Pages : 0
Book Description
Now you can clearly present even the most complex computational theory topics to your students with Sipser’s distinct, market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today’s computational theory course, this highly anticipated revision retains the unmatched clarity and thorough coverage that make it a leading text for upper-level undergraduate and introductory graduate students. This edition continues author Michael Sipser’s well-known, approachable style with timely revisions, additional exercises, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. This edition’s refined presentation ensures a trusted accuracy and clarity that make the challenging study of computational theory accessible and intuitive to students while maintaining the subject’s rigor and formalism. Readers gain a solid understanding of the fundamental mathematical properties of computer hardware, software, and applications with a blend of practical and philosophical coverage and mathematical treatments, including advanced theorems and proofs. INTRODUCTION TO THE THEORY OF COMPUTATION, 3E’s comprehensive coverage makes this an ideal ongoing reference tool for those studying theoretical computing. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Introduction to Computational Contact Mechanics
Author: Alexander Konyukhov
Publisher: John Wiley & Sons
ISBN: 111877065X
Category : Technology & Engineering
Languages : en
Pages : 304
Book Description
Introduction to Computational Contact Mechanics: A Geometrical Approach covers the fundamentals of computational contact mechanics and focuses on its practical implementation. Part one of this textbook focuses on the underlying theory and covers essential information about differential geometry and mathematical methods which are necessary to build the computational algorithm independently from other courses in mechanics. The geometrically exact theory for the computational contact mechanics is described in step-by-step manner, using examples of strict derivation from a mathematical point of view. The final goal of the theory is to construct in the independent approximation form /so-called covariant form, including application to high-order and isogeometric finite elements. The second part of a book is a practical guide for programming of contact elements and is written in such a way that makes it easy for a programmer to implement using any programming language. All programming examples are accompanied by a set of verification examples allowing the user to learn the research verification technique, essential for the computational contact analysis. Key features: Covers the fundamentals of computational contact mechanics Covers practical programming, verification and analysis of contact problems Presents the geometrically exact theory for computational contact mechanics Describes algorithms used in well-known finite element software packages Describes modeling of forces as an inverse contact algorithm Includes practical exercises Contains unique verification examples such as the generalized Euler formula for a rope on a surface, and the impact problem and verification of thå percussion center Accompanied by a website hosting software Introduction to Computational Contact Mechanics: A Geometrical Approach is an ideal textbook for graduates and senior undergraduates, and is also a useful reference for researchers and practitioners working in computational mechanics.
Publisher: John Wiley & Sons
ISBN: 111877065X
Category : Technology & Engineering
Languages : en
Pages : 304
Book Description
Introduction to Computational Contact Mechanics: A Geometrical Approach covers the fundamentals of computational contact mechanics and focuses on its practical implementation. Part one of this textbook focuses on the underlying theory and covers essential information about differential geometry and mathematical methods which are necessary to build the computational algorithm independently from other courses in mechanics. The geometrically exact theory for the computational contact mechanics is described in step-by-step manner, using examples of strict derivation from a mathematical point of view. The final goal of the theory is to construct in the independent approximation form /so-called covariant form, including application to high-order and isogeometric finite elements. The second part of a book is a practical guide for programming of contact elements and is written in such a way that makes it easy for a programmer to implement using any programming language. All programming examples are accompanied by a set of verification examples allowing the user to learn the research verification technique, essential for the computational contact analysis. Key features: Covers the fundamentals of computational contact mechanics Covers practical programming, verification and analysis of contact problems Presents the geometrically exact theory for computational contact mechanics Describes algorithms used in well-known finite element software packages Describes modeling of forces as an inverse contact algorithm Includes practical exercises Contains unique verification examples such as the generalized Euler formula for a rope on a surface, and the impact problem and verification of thå percussion center Accompanied by a website hosting software Introduction to Computational Contact Mechanics: A Geometrical Approach is an ideal textbook for graduates and senior undergraduates, and is also a useful reference for researchers and practitioners working in computational mechanics.
Mathematics and Computation
Author: Avi Wigderson
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434
Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434
Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Theory and Computation in Hydrodynamic Stability
Author: W. O. Criminale
Publisher: Cambridge University Press
ISBN: 1108475337
Category : Mathematics
Languages : en
Pages : 565
Book Description
Offers modern and numerical techniques for the stability of fluid flow with illustrations, an extensive bibliography, and exercises with solutions.
Publisher: Cambridge University Press
ISBN: 1108475337
Category : Mathematics
Languages : en
Pages : 565
Book Description
Offers modern and numerical techniques for the stability of fluid flow with illustrations, an extensive bibliography, and exercises with solutions.
Computational Contact Mechanics
Author: Alexander Konyukhov
Publisher: Springer Science & Business Media
ISBN: 3642315313
Category : Science
Languages : en
Pages : 446
Book Description
This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics.
Publisher: Springer Science & Business Media
ISBN: 3642315313
Category : Science
Languages : en
Pages : 446
Book Description
This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics.