Measure, Probability, and Mathematical Finance

Measure, Probability, and Mathematical Finance PDF Author: Guojun Gan
Publisher: John Wiley & Sons
ISBN: 1118831969
Category : Mathematics
Languages : en
Pages : 54

Get Book Here

Book Description
An introduction to the mathematical theory and financial models developed and used on Wall Street Providing both a theoretical and practical approach to the underlying mathematical theory behind financial models, Measure, Probability, and Mathematical Finance: A Problem-Oriented Approach presents important concepts and results in measure theory, probability theory, stochastic processes, and stochastic calculus. Measure theory is indispensable to the rigorous development of probability theory and is also necessary to properly address martingale measures, the change of numeraire theory, and LIBOR market models. In addition, probability theory is presented to facilitate the development of stochastic processes, including martingales and Brownian motions, while stochastic processes and stochastic calculus are discussed to model asset prices and develop derivative pricing models. The authors promote a problem-solving approach when applying mathematics in real-world situations, and readers are encouraged to address theorems and problems with mathematical rigor. In addition, Measure, Probability, and Mathematical Finance features: A comprehensive list of concepts and theorems from measure theory, probability theory, stochastic processes, and stochastic calculus Over 500 problems with hints and select solutions to reinforce basic concepts and important theorems Classic derivative pricing models in mathematical finance that have been developed and published since the seminal work of Black and Scholes Measure, Probability, and Mathematical Finance: A Problem-Oriented Approach is an ideal textbook for introductory quantitative courses in business, economics, and mathematical finance at the upper-undergraduate and graduate levels. The book is also a useful reference for readers who need to build their mathematical skills in order to better understand the mathematical theory of derivative pricing models.

Measure, Probability, and Mathematical Finance

Measure, Probability, and Mathematical Finance PDF Author: Guojun Gan
Publisher: John Wiley & Sons
ISBN: 1118831969
Category : Mathematics
Languages : en
Pages : 54

Get Book Here

Book Description
An introduction to the mathematical theory and financial models developed and used on Wall Street Providing both a theoretical and practical approach to the underlying mathematical theory behind financial models, Measure, Probability, and Mathematical Finance: A Problem-Oriented Approach presents important concepts and results in measure theory, probability theory, stochastic processes, and stochastic calculus. Measure theory is indispensable to the rigorous development of probability theory and is also necessary to properly address martingale measures, the change of numeraire theory, and LIBOR market models. In addition, probability theory is presented to facilitate the development of stochastic processes, including martingales and Brownian motions, while stochastic processes and stochastic calculus are discussed to model asset prices and develop derivative pricing models. The authors promote a problem-solving approach when applying mathematics in real-world situations, and readers are encouraged to address theorems and problems with mathematical rigor. In addition, Measure, Probability, and Mathematical Finance features: A comprehensive list of concepts and theorems from measure theory, probability theory, stochastic processes, and stochastic calculus Over 500 problems with hints and select solutions to reinforce basic concepts and important theorems Classic derivative pricing models in mathematical finance that have been developed and published since the seminal work of Black and Scholes Measure, Probability, and Mathematical Finance: A Problem-Oriented Approach is an ideal textbook for introductory quantitative courses in business, economics, and mathematical finance at the upper-undergraduate and graduate levels. The book is also a useful reference for readers who need to build their mathematical skills in order to better understand the mathematical theory of derivative pricing models.

Probability and Finance

Probability and Finance PDF Author: Glenn Shafer
Publisher: John Wiley & Sons
ISBN: 0471461717
Category : Business & Economics
Languages : en
Pages : 438

Get Book Here

Book Description
Provides a foundation for probability based on game theory rather than measure theory. A strong philosophical approach with practical applications. Presents in-depth coverage of classical probability theory as well as new theory.

Probability for Finance

Probability for Finance PDF Author: Jan Malczak
Publisher: Cambridge University Press
ISBN: 1107002494
Category : Business & Economics
Languages : en
Pages : 197

Get Book Here

Book Description
A rigorous, unfussy introduction to modern probability theory that focuses squarely on applications in finance.

A Probability Metrics Approach to Financial Risk Measures

A Probability Metrics Approach to Financial Risk Measures PDF Author: Svetlozar T. Rachev
Publisher: John Wiley & Sons
ISBN: 1444392700
Category : Business & Economics
Languages : en
Pages : 264

Get Book Here

Book Description
A Probability Metrics Approach to Financial Risk Measures relates the field of probability metrics and risk measures to one another and applies them to finance for the first time. Helps to answer the question: which risk measure is best for a given problem? Finds new relations between existing classes of risk measures Describes applications in finance and extends them where possible Presents the theory of probability metrics in a more accessible form which would be appropriate for non-specialists in the field Applications include optimal portfolio choice, risk theory, and numerical methods in finance Topics requiring more mathematical rigor and detail are included in technical appendices to chapters

Measure, Integral and Probability

Measure, Integral and Probability PDF Author: Marek Capinski
Publisher: Springer Science & Business Media
ISBN: 1447136314
Category : Mathematics
Languages : en
Pages : 229

Get Book Here

Book Description
This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.

Probability Theory in Finance

Probability Theory in Finance PDF Author: Seán Dineen
Publisher: American Mathematical Soc.
ISBN: 0821894900
Category : Mathematics
Languages : en
Pages : 323

Get Book Here

Book Description
The use of the Black-Scholes model and formula is pervasive in financial markets. There are very few undergraduate textbooks available on the subject and, until now, almost none written by mathematicians. Based on a course given by the author, the goal of

Measure, Probability, and Mathematical Finance

Measure, Probability, and Mathematical Finance PDF Author: Guojun Gan
Publisher: Wiley
ISBN: 9781118831977
Category : Mathematics
Languages : en
Pages : 744

Get Book Here

Book Description


Game-Theoretic Foundations for Probability and Finance

Game-Theoretic Foundations for Probability and Finance PDF Author: Glenn Shafer
Publisher: John Wiley & Sons
ISBN: 1118547934
Category : Business & Economics
Languages : en
Pages : 483

Get Book Here

Book Description
Game-theoretic probability and finance come of age Glenn Shafer and Vladimir Vovk’s Probability and Finance, published in 2001, showed that perfect-information games can be used to define mathematical probability. Based on fifteen years of further research, Game-Theoretic Foundations for Probability and Finance presents a mature view of the foundational role game theory can play. Its account of probability theory opens the way to new methods of prediction and testing and makes many statistical methods more transparent and widely usable. Its contributions to finance theory include purely game-theoretic accounts of Ito’s stochastic calculus, the capital asset pricing model, the equity premium, and portfolio theory. Game-Theoretic Foundations for Probability and Finance is a book of research. It is also a teaching resource. Each chapter is supplemented with carefully designed exercises and notes relating the new theory to its historical context. Praise from early readers “Ever since Kolmogorov's Grundbegriffe, the standard mathematical treatment of probability theory has been measure-theoretic. In this ground-breaking work, Shafer and Vovk give a game-theoretic foundation instead. While being just as rigorous, the game-theoretic approach allows for vast and useful generalizations of classical measure-theoretic results, while also giving rise to new, radical ideas for prediction, statistics and mathematical finance without stochastic assumptions. The authors set out their theory in great detail, resulting in what is definitely one of the most important books on the foundations of probability to have appeared in the last few decades.” – Peter Grünwald, CWI and University of Leiden “Shafer and Vovk have thoroughly re-written their 2001 book on the game-theoretic foundations for probability and for finance. They have included an account of the tremendous growth that has occurred since, in the game-theoretic and pathwise approaches to stochastic analysis and in their applications to continuous-time finance. This new book will undoubtedly spur a better understanding of the foundations of these very important fields, and we should all be grateful to its authors.” – Ioannis Karatzas, Columbia University

Measure, Integral, Derivative

Measure, Integral, Derivative PDF Author: Sergei Ovchinnikov
Publisher: Springer Science & Business Media
ISBN: 1461471966
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
This classroom-tested text is intended for a one-semester course in Lebesgue’s theory. With over 180 exercises, the text takes an elementary approach, making it easily accessible to both upper-undergraduate- and lower-graduate-level students. The three main topics presented are measure, integration, and differentiation, and the only prerequisite is a course in elementary real analysis. In order to keep the book self-contained, an introductory chapter is included with the intent to fill the gap between what the student may have learned before and what is required to fully understand the consequent text. Proofs of difficult results, such as the differentiability property of functions of bounded variations, are dissected into small steps in order to be accessible to students. With the exception of a few simple statements, all results are proven in the text. The presentation is elementary, where σ-algebras are not used in the text on measure theory and Dini’s derivatives are not used in the chapter on differentiation. However, all the main results of Lebesgue’s theory are found in the book. http://online.sfsu.edu/sergei/MID.htm

Informal Introduction To Stochastic Calculus With Applications, An (Second Edition)

Informal Introduction To Stochastic Calculus With Applications, An (Second Edition) PDF Author: Ovidiu Calin
Publisher: World Scientific
ISBN: 9811247110
Category : Mathematics
Languages : en
Pages : 510

Get Book Here

Book Description
Most branches of science involving random fluctuations can be approached by Stochastic Calculus. These include, but are not limited to, signal processing, noise filtering, stochastic control, optimal stopping, electrical circuits, financial markets, molecular chemistry, population dynamics, etc. All these applications assume a strong mathematical background, which in general takes a long time to develop. Stochastic Calculus is not an easy to grasp theory, and in general, requires acquaintance with the probability, analysis and measure theory.The goal of this book is to present Stochastic Calculus at an introductory level and not at its maximum mathematical detail. The author's goal was to capture as much as possible the spirit of elementary deterministic Calculus, at which students have been already exposed. This assumes a presentation that mimics similar properties of deterministic Calculus, which facilitates understanding of more complicated topics of Stochastic Calculus.The second edition contains several new features that improved the first edition both qualitatively and quantitatively. First, two more chapters have been added, Chapter 12 and Chapter 13, dealing with applications of stochastic processes in Electrochemistry and global optimization methods.This edition contains also a final chapter material containing fully solved review problems and provides solutions, or at least valuable hints, to all proposed problems. The present edition contains a total of about 250 exercises.This edition has also improved presentation from the first edition in several chapters, including new material.