Author: D.Ya. Petrina
Publisher: CRC Press
ISBN: 9780415273541
Category : Science
Languages : en
Pages : 352
Book Description
This monograph considers systems of infinite number of particles, in particular the justification of the procedure of thermodynamic limit transition. The authors discuss the equilibrium and non-equilibrium states of infinite classical statistical systems. Those states are defined in terms of stationary and nonstationary solutions to the Bogolyubov equations for the sequences of correlation functions in the thermodynamic limit. This is the first detailed investigation of the thermodynamic limit for non-equilibrium systems and of the states of infinite systems in the cases of both canonical and grand canonical ensembles, for which the thermodynamic equivalence is proved. A comprehensive survey of results is also included; it concerns the properties of correlation functions for infinite systems and the corresponding equations. For this new edition, the authors have made changes to reflect the development of theory in the last ten years. They have also simplified certain sections, presenting them more systematically, and greatly increased the number of references. The book is aimed at theoretical physicists and mathematicians and will also be of use to students and postgraduate students in the field.
Mathematical Foundations of Classical Statistical Mechanics
Author: D.Ya. Petrina
Publisher: CRC Press
ISBN: 9780415273541
Category : Science
Languages : en
Pages : 352
Book Description
This monograph considers systems of infinite number of particles, in particular the justification of the procedure of thermodynamic limit transition. The authors discuss the equilibrium and non-equilibrium states of infinite classical statistical systems. Those states are defined in terms of stationary and nonstationary solutions to the Bogolyubov equations for the sequences of correlation functions in the thermodynamic limit. This is the first detailed investigation of the thermodynamic limit for non-equilibrium systems and of the states of infinite systems in the cases of both canonical and grand canonical ensembles, for which the thermodynamic equivalence is proved. A comprehensive survey of results is also included; it concerns the properties of correlation functions for infinite systems and the corresponding equations. For this new edition, the authors have made changes to reflect the development of theory in the last ten years. They have also simplified certain sections, presenting them more systematically, and greatly increased the number of references. The book is aimed at theoretical physicists and mathematicians and will also be of use to students and postgraduate students in the field.
Publisher: CRC Press
ISBN: 9780415273541
Category : Science
Languages : en
Pages : 352
Book Description
This monograph considers systems of infinite number of particles, in particular the justification of the procedure of thermodynamic limit transition. The authors discuss the equilibrium and non-equilibrium states of infinite classical statistical systems. Those states are defined in terms of stationary and nonstationary solutions to the Bogolyubov equations for the sequences of correlation functions in the thermodynamic limit. This is the first detailed investigation of the thermodynamic limit for non-equilibrium systems and of the states of infinite systems in the cases of both canonical and grand canonical ensembles, for which the thermodynamic equivalence is proved. A comprehensive survey of results is also included; it concerns the properties of correlation functions for infinite systems and the corresponding equations. For this new edition, the authors have made changes to reflect the development of theory in the last ten years. They have also simplified certain sections, presenting them more systematically, and greatly increased the number of references. The book is aimed at theoretical physicists and mathematicians and will also be of use to students and postgraduate students in the field.
Mathematical Foundations of Statistical Mechanics
Author: Aleksandr I?Akovlevich Khinchin
Publisher: Courier Corporation
ISBN: 9780486601472
Category : Mathematics
Languages : en
Pages : 212
Book Description
Phase space, ergodic problems, central limit theorem, dispersion and distribution of sum functions. Chapters include Geometry and Kinematics of the Phase Space; Ergodic Problem; Reduction to the Problem of the Theory of Probability; Application of the Central Limit Theorem; Ideal Monatomic Gas; The Foundation of Thermodynamics; and more.
Publisher: Courier Corporation
ISBN: 9780486601472
Category : Mathematics
Languages : en
Pages : 212
Book Description
Phase space, ergodic problems, central limit theorem, dispersion and distribution of sum functions. Chapters include Geometry and Kinematics of the Phase Space; Ergodic Problem; Reduction to the Problem of the Theory of Probability; Application of the Central Limit Theorem; Ideal Monatomic Gas; The Foundation of Thermodynamics; and more.
Foundations of Statistical Mechanics
Author: O. Penrose
Publisher: Elsevier
ISBN: 1483156486
Category : Science
Languages : en
Pages : 272
Book Description
International Series of Monographs in Natural Philosophy, Volume 22: Foundations of Statistical Mechanics: A Deductive Treatment presents the main approaches to the basic problems of statistical mechanics. This book examines the theory that provides explicit recognition to the limitations on one's powers of observation. Organized into six chapters, this volume begins with an overview of the main physical assumptions and their idealization in the form of postulates. This text then examines the consequences of these postulates that culminate in a derivation of the fundamental formula for calculating probabilities in terms of dynamic quantities. Other chapters provide a careful analysis of the significant notion of entropy, which shows the links between thermodynamics and statistical mechanics and also between communication theory and statistical mechanics. The final chapter deals with the thermodynamic concept of entropy. This book is intended to be suitable for students of theoretical physics. Probability theorists, statisticians, and philosophers will also find this book useful.
Publisher: Elsevier
ISBN: 1483156486
Category : Science
Languages : en
Pages : 272
Book Description
International Series of Monographs in Natural Philosophy, Volume 22: Foundations of Statistical Mechanics: A Deductive Treatment presents the main approaches to the basic problems of statistical mechanics. This book examines the theory that provides explicit recognition to the limitations on one's powers of observation. Organized into six chapters, this volume begins with an overview of the main physical assumptions and their idealization in the form of postulates. This text then examines the consequences of these postulates that culminate in a derivation of the fundamental formula for calculating probabilities in terms of dynamic quantities. Other chapters provide a careful analysis of the significant notion of entropy, which shows the links between thermodynamics and statistical mechanics and also between communication theory and statistical mechanics. The final chapter deals with the thermodynamic concept of entropy. This book is intended to be suitable for students of theoretical physics. Probability theorists, statisticians, and philosophers will also find this book useful.
Mathematical Foundations of Quantum Mechanics
Author: George W. Mackey
Publisher: Courier Corporation
ISBN: 0486154475
Category : Mathematics
Languages : en
Pages : 162
Book Description
This graduate-level text introduces fundamentals of classical mechanics; surveys basics of quantum mechanics; and concludes with a look at group theory and quantum mechanics of the atom. 1963 edition.
Publisher: Courier Corporation
ISBN: 0486154475
Category : Mathematics
Languages : en
Pages : 162
Book Description
This graduate-level text introduces fundamentals of classical mechanics; surveys basics of quantum mechanics; and concludes with a look at group theory and quantum mechanics of the atom. 1963 edition.
Mathematical Foundations of Quantum Mechanics
Author: John von Neumann
Publisher: Princeton University Press
ISBN: 9780691028934
Category : Mathematics
Languages : en
Pages : 462
Book Description
A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books
Publisher: Princeton University Press
ISBN: 9780691028934
Category : Mathematics
Languages : en
Pages : 462
Book Description
A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books
Mathematical Foundations of Quantum Statistics
Author: Aleksandr I︠A︡kovlevich Khinchin
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 252
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 252
Book Description
Mathematical Foundations of Quantum Statistical Mechanics
Author: D.Y. Petrina
Publisher: Springer Science & Business Media
ISBN: 940110185X
Category : Science
Languages : en
Pages : 460
Book Description
This monograph is devoted to quantum statistical mechanics. It can be regarded as a continuation of the book "Mathematical Foundations of Classical Statistical Mechanics. Continuous Systems" (Gordon & Breach SP, 1989) written together with my colleagues V. I. Gerasimenko and P. V. Malyshev. Taken together, these books give a complete pre sentation of the statistical mechanics of continuous systems, both quantum and classical, from the common point of view. Both books have similar contents. They deal with the investigation of states of in finite systems, which are described by infinite sequences of statistical operators (reduced density matrices) or Green's functions in the quantum case and by infinite sequences of distribution functions in the classical case. The equations of state and their solutions are the main object of investigation in these books. For infinite systems, the solutions of the equations of state are constructed by using the thermodynamic limit procedure, accord ing to which we first find a solution for a system of finitely many particles and then let the number of particles and the volume of a region tend to infinity keeping the density of particles constant. However, the style of presentation in these books is quite different.
Publisher: Springer Science & Business Media
ISBN: 940110185X
Category : Science
Languages : en
Pages : 460
Book Description
This monograph is devoted to quantum statistical mechanics. It can be regarded as a continuation of the book "Mathematical Foundations of Classical Statistical Mechanics. Continuous Systems" (Gordon & Breach SP, 1989) written together with my colleagues V. I. Gerasimenko and P. V. Malyshev. Taken together, these books give a complete pre sentation of the statistical mechanics of continuous systems, both quantum and classical, from the common point of view. Both books have similar contents. They deal with the investigation of states of in finite systems, which are described by infinite sequences of statistical operators (reduced density matrices) or Green's functions in the quantum case and by infinite sequences of distribution functions in the classical case. The equations of state and their solutions are the main object of investigation in these books. For infinite systems, the solutions of the equations of state are constructed by using the thermodynamic limit procedure, accord ing to which we first find a solution for a system of finitely many particles and then let the number of particles and the volume of a region tend to infinity keeping the density of particles constant. However, the style of presentation in these books is quite different.
Mathematical Physics
Author: Sadri Hassani
Publisher: Springer Science & Business Media
ISBN: 9780387985794
Category : Science
Languages : en
Pages : 1052
Book Description
For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.
Publisher: Springer Science & Business Media
ISBN: 9780387985794
Category : Science
Languages : en
Pages : 1052
Book Description
For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.
Physics for Mathematicians
Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
The Principles of Statistical Mechanics
Author: Richard Chace Tolman
Publisher: Courier Corporation
ISBN: 9780486638966
Category : Science
Languages : en
Pages : 700
Book Description
This is the definitive treatise on the fundamentals of statistical mechanics. A concise exposition of classical statistical mechanics is followed by a thorough elucidation of quantum statistical mechanics: postulates, theorems, statistical ensembles, changes in quantum mechanical systems with time, and more. The final two chapters discuss applications of statistical mechanics to thermodynamic behavior. 1930 edition.
Publisher: Courier Corporation
ISBN: 9780486638966
Category : Science
Languages : en
Pages : 700
Book Description
This is the definitive treatise on the fundamentals of statistical mechanics. A concise exposition of classical statistical mechanics is followed by a thorough elucidation of quantum statistical mechanics: postulates, theorems, statistical ensembles, changes in quantum mechanical systems with time, and more. The final two chapters discuss applications of statistical mechanics to thermodynamic behavior. 1930 edition.