Low-power High-resolution CMOS Switched-capacitor Delta-sigma Analog-to-digital Converters for Sensor Applications

Low-power High-resolution CMOS Switched-capacitor Delta-sigma Analog-to-digital Converters for Sensor Applications PDF Author: Stepan Sutula
Publisher:
ISBN:
Category :
Languages : en
Pages : 147

Get Book Here

Book Description

Low-power High-resolution CMOS Switched-capacitor Delta-sigma Analog-to-digital Converters for Sensor Applications

Low-power High-resolution CMOS Switched-capacitor Delta-sigma Analog-to-digital Converters for Sensor Applications PDF Author: Stepan Sutula
Publisher:
ISBN:
Category :
Languages : en
Pages : 147

Get Book Here

Book Description


Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters

Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters PDF Author: Vincenzo Peluso
Publisher: Springer Science & Business Media
ISBN: 1475729782
Category : Technology & Engineering
Languages : en
Pages : 178

Get Book Here

Book Description
Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters investigates the feasibility of designing Delta-Sigma Analog to Digital Converters for very low supply voltage (lower than 1.5V) and low power operation in standard CMOS processes. The chosen technique of implementation is the Switched Opamp Technique which provides Switched Capacitor operation at low supply voltage without the need to apply voltage multipliers or low VtMOST devices. A method of implementing the classic single loop and cascaded Delta-Sigma modulator topologies with half delay integrators is presented. Those topologies are studied in order to find the parameters that maximise the performance in terms of peak SNR. Based on a linear model, the performance degradations of higher order single loop and cascaded modulators, compared to a hypothetical ideal modulator, are quantified. An overview of low voltage Switched Capacitor design techniques, such as the use of voltage multipliers, low VtMOST devices and the Switched Opamp Technique, is given. An in-depth discussion of the present status of the Switched Opamp Technique covers the single-ended Original Switched Opamp Technique, the Modified Switched Opamp Technique, which allows lower supply voltage operation, and differential implementation including common mode control techniques. The restrictions imposed on the analog circuits by low supply voltage operation are investigated. Several low voltage circuit building blocks, some of which are new, are discussed. A new low voltage class AB OTA, especially suited for differential Switched Opamp applications, together with a common mode feedback amplifier and a comparator are presented and analyzed. As part of a systematic top-down design approach, the non-ideal charge transfer of the Switched Opamp integrator cell is modeled, based upon several models of the main opamp non-ideal characteristics. Behavioral simulations carried out with these models yield the required opamp specifications that ensure that the intended performance is met in an implementation. A power consumption analysis is performed. The influence of all design parameters, especially the low power supply voltage, is highlighted. Design guidelines towards low power operation are distilled. Two implementations are presented together with measurement results. The first one is a single-ended implementation of a Delta-Sigma ADC operating with 1.5V supply voltage and consuming 100 &mgr;W for a 74 dB dynamic range in a 3.4 kHz bandwidth. The second implementation is differential and operates with 900 mV. It achieves 77 dB dynamic range in 16 kHz bandwidth and consumes 40 &mgr;W. Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters is essential reading for analog design engineers and researchers.

The Design of Low-Voltage, Low-Power Sigma-Delta Modulators

The Design of Low-Voltage, Low-Power Sigma-Delta Modulators PDF Author: Shahriar Rabii
Publisher: Springer Science & Business Media
ISBN: 1461551056
Category : Technology & Engineering
Languages : en
Pages : 198

Get Book Here

Book Description
Oversampling techniques based on sigma-delta modulation are widely used to implement the analog/digital interfaces in CMOS VLSI technologies. This approach is relatively insensitive to imperfections in the manufacturing process and offers numerous advantages for the realization of high-resolution analog-to-digital (A/D) converters in the low-voltage environment that is increasingly demanded by advanced VLSI technologies and by portable electronic systems. In The Design of Low-Voltage, Low-Power Sigma-Delta Modulators, an analysis of power dissipation in sigma-delta modulators is presented, and a low-voltage implementation of a digital-audio performance A/D converter based on the results of this analysis is described. Although significant power savings can typically be achieved in digital circuits by reducing the power supply voltage, the power dissipation in analog circuits actually tends to increase with decreasing supply voltages. Oversampling architectures are a potentially power-efficient means of implementing high-resolution A/D converters because they reduce the number and complexity of the analog circuits in comparison with Nyquist-rate converters. In fact, it is shown that the power dissipation of a sigma-delta modulator can approach that of a single integrator with the resolution and bandwidth required for a given application. In this research the influence of various parameters on the power dissipation of the modulator has been evaluated and strategies for the design of a power-efficient implementation have been identified. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators begins with an overview of A/D conversion, emphasizing sigma-delta modulators. It includes a detailed analysis of noise in sigma-delta modulators, analyzes power dissipation in integrator circuits, and addresses practical issues in the circuit design and testing of a high-resolution modulator. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators will be of interest to practicing engineers and researchers in the areas of mixed-signal and analog integrated circuit design.

High Efficiency Wideband Low-power Delta-sigma Modulators

High Efficiency Wideband Low-power Delta-sigma Modulators PDF Author: Sang Hyeon Lee
Publisher:
ISBN:
Category : Analog-to-digital converters
Languages : en
Pages : 91

Get Book Here

Book Description
Delta-sigma analog-to-digital converters traditionally have been used for low speed, high resolution applications such as measurements, sensors, voice and audio systems. Through continued device scaling in CMOS technology and architectural and circuit level design innovations, they have even become popular for wideband, high dynamic range applications such as wired and wireless communication systems. Therefore, power efficient wideband low power delta-sigma data converters that bridges analog and digital have become mandatory for popular mobile applications today. In this dissertation, two architectural innovations and a development and realization of a state-of-the-art delta-sigma analog to digital converter with effective design techniques in both architectural and circuit levels are presented. The first one is timing-relaxed double noise coupling which effectively provides 2nd order noise shaping in the noise transfer function and overcomes stringent timing requirement for quantization and DEM. The second one presented is a noise shaping SAR quantizer, which provides one order of noise shaping in the noise transfer function. It uses a charge redistribution SAR quantizer and is applied to a timing-relaxed lowdistortion delta-sigma modulator which is suitable for adopting SAR quantizer. Finally a cascade switched capacitor delta-sigma analog-to-digital converter suitable for WLAN applications is presented. It uses a noise folding free double sampling technique and an improved low-distortion architecture with an embedded-adder integrator. The prototype chip is fabricated with a double poly, 4 metal, 0.18[micro]m CMOS process. The measurement result achieves 73.8 dB SNDR over 10 MHz bandwidth. The figure of merit defined by FoM = P/(2 x BW x 2[superscript ENOB]) is 0.27 pJ/conv-step. The measurement results indicate that the proposed design ideas are effective and useful for wideband, low power delta-sigma analog-to-digital converters with low oversampling ratio.

Sigma-Delta Converters: Practical Design Guide

Sigma-Delta Converters: Practical Design Guide PDF Author: Jose M. de la Rosa
Publisher: John Wiley & Sons
ISBN: 1119275784
Category : Technology & Engineering
Languages : en
Pages : 581

Get Book Here

Book Description
Thoroughly revised and expanded to help readers systematically increase their knowledge and insight about Sigma-Delta Modulators Sigma-Delta Modulators (SDMs) have become one of the best choices for the implementation of analog/digital interfaces of electronic systems integrated in CMOS technologies. Compared to other kinds of Analog-to-Digital Converters (ADCs), Σ∆Ms cover one of the widest conversion regions of the resolution-versus-bandwidth plane, being the most efficient solution to digitize signals in an increasingly number of applications, which span from high-resolution low-bandwidth digital audio, sensor interfaces, and instrumentation, to ultra-low power biomedical systems and medium-resolution broadband wireless communications. Following the spirit of its first edition, Sigma-Delta Converters: Practical Design Guide, 2nd Edition takes a comprehensive look at SDMs, their diverse types of architectures, circuit techniques, analysis synthesis methods, and CAD tools, as well as their practical design considerations. It compiles and updates the current research reported on the topic, and explains the multiple trade-offs involved in the whole design flow of Sigma-Delta Modulators—from specifications to chip implementation and characterization. The book follows a top-down approach in order to provide readers with the necessary understanding about recent advances, trends, and challenges in state-of-the-art Σ∆Ms. It makes more emphasis on two key points, which were not treated so deeply in the first edition: It includes a more detailed explanation of Σ∆Ms implemented using Continuous-Time (CT) circuits, going from system-level synthesis to practical circuit limitations. It provides more practical case studies and applications, as well as a deeper description of the synthesis methodologies and CAD tools employed in the design of Σ∆ converters. Sigma-Delta Converters: Practical Design Guide, 2nd Edition serves as an excellent textbook for undergraduate and graduate students in electrical engineering as well as design engineers working on SD data-converters, who are looking for a uniform and self-contained reference in this hot topic. With this goal in mind, and based on the feedback received from readers, the contents have been revised and structured to make this new edition a unique monograph written in a didactical, pedagogical, and intuitive style.

Systematic Design of Sigma-Delta Analog-to-Digital Converters

Systematic Design of Sigma-Delta Analog-to-Digital Converters PDF Author: Ovidiu Bajdechi
Publisher: Springer Science & Business Media
ISBN: 9781402079450
Category : Computers
Languages : en
Pages : 216

Get Book Here

Book Description
Systematic Design of Sigma-Delta Analog-to-Digital Converters describes the issues related to the sigma-delta analog-to-digital converters (ADCs) design in a systematic manner: from the top level of abstraction represented by the filters defining signal and noise transfer functions (STF, NTF), passing through the architecture level where topology-related performance is calculated and simulated, and finally down to parameters of circuit elements like resistors, capacitors, and amplifier transconductances used in individual integrators. The systematic approach allows the evaluation of different loop filters (order, aggressiveness, discrete-time or continuous-time implementation) with quantizers varying in resolution. Topologies explored range from simple single loops to multiple cascaded loops with complex structures including more feedbacks and feedforwards. For differential circuits, with switched-capacitor integrators for discrete-time (DT) loop filters and active-RC for continuous-time (CT) ones, the passive integrator components are calculated and the power consumption is estimated, based on top-level requirements like harmonic distortion and noise budget. This unified, systematic approach to choosing the best sigma-delta ADC implementation for a given design target yields an interesting solution for a high-resolution, broadband (DSL-like) ADC operated at low oversampling ratio, which is detailed down to transistor-level schematics. The target audience of Systematic Design of Sigma-Delta Analog-to-Digital Converters are engineers designing sigma-delta ADCs and/or switched-capacitor and continuous-time filters, both beginners and experienced. It is also intended for students/academics involved in sigma-delta and analog CAD research.

Low-power High-speed High-resolution Delta-sigma Modulators for Digital TV Receivers in Nanometer CMOS

Low-power High-speed High-resolution Delta-sigma Modulators for Digital TV Receivers in Nanometer CMOS PDF Author: Mostafa Haroun
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
"The use of high-speed high-resolution analog-to-digital converters (ADCs) allows part of the signal processing to be done in the digital domain allowing for higher system integration and cheaper fabrication. Becoming more in use, hand-held devices have low-power requirements to allow for longer battery life. Also, designing ADCs in nanometer digital CMOS technologies make them more integrable with digital processing blocks and cheaper. This thesis aims at designing a high-speed (16MS/s conversion rate) high-resolution (12bits) Delta-Sigma modulator with low-power consumption in nanometer CMOS. Delta-Sigma modulators can achieve high resolution in low and medium speed applications. For higher speed applications, the oversampling ratio (OSR) will have to be kept low to avoid inefficient design. However, lowering the OSR requires special care in the design starting from the architecture until the full circuit implementation. In nanometer CMOS technologies, analog properties, such as intrinsic gain, degrade which might result in a higher power consumption. Moreover, the low nominal supply voltages associated with such technologies adds more challenges to the design of a low distortion power-efficient Delta-Sigma modulator. Targeting a specic resolution, lowering the voltage supply usually results in a higher power consumption. This thesis suggests possible solutions to achieve low power consumption while targeting high-speed applications in nanometer low-voltage-supply environment.This thesis presents a low-power Discrete-Time (DT) Delta-Sigma modulator making use of a single-loop multibit DT digital input-feedforward Delta-Sigma architecture. The main feature of this architecture is the reduced signal swings at the output of the integrators which allows the use of a low voltage supply. The low-power Switched-Capacitor (SC) implementation is ensured by using a novel opamp switching technique, optimizing simultaneous opamp's settling in cascaded nondelaying SC integrators, and using non-overlapping clock phases with unequal duty-cycles. The novel opamp switching technique is based on a current-mirror opamp with switchable transconductances. The current-mirror opamp works with full current during the charge-transfer phase while the output current is partially switched off during the sampling phase. Power saving can be achieved while ensuring that the opamp output is available during both phases. The simultaneous settling of series opamps in a two cascaded nondelaying SC integrators scheme is looked at as a two-pole system where power optimization is necessary to ensure minimum power consumption while meeting the settling requirements. The use of clock phases with unequal duty-cycles gives the designer an extra degree of freedom to further power optimize the design. The experimental Delta-Sigma ADC is a 4th-order 5.5bits single-loop Delta-Sigma modulator with an OSR of 8. The design starts with the structural-level aspects in which system-level decisions are made and simulations are carried-out with behavioral models to find the suitable circuit parameters. Circuit-level design in then considered to design each block and simulate the full-system. Fabricated in 1V 65nm CMOS, the Delta-Sigma modulator prototype occupies an active area of 1.2mm2. Although the targeted resolution is about 12bits, the experimental results shows a dynamic range (DR) of 66dB (11bits) over an 8MHz bandwidth while consuming 26mW and a peak SNR/SNDR of 64/58.5dB. The proposed opamp switching technique brings the total power consumption from 29mW to 26mW without affecting the performance (SNDR stays at 58.5dB). The deviation in experimental performance, from simulations, in thought to be due to higher parasitic capacitance requiring higher bias currents which results in drop of opamp dc gain. Compared to state of the art high-speed high-resolution Delta-Sigma modulators operated from 1V supply and fabricated in CMOS, it achieves a reasonable Figure-of-Merit." --

CMOS Cascade Sigma-Delta Modulators for Sensors and Telecom

CMOS Cascade Sigma-Delta Modulators for Sensors and Telecom PDF Author: Rocío Río Fernández
Publisher: Springer Science & Business Media
ISBN: 1402047762
Category : Technology & Engineering
Languages : en
Pages : 299

Get Book Here

Book Description
Institutional book, not really for bookstore catalogue The book contains valuable information structured to provide insight on how to design SC sigma-delta modulators. It presents architectures, circuits, models, methods and practical considerations for the design of high-performance low-pass switched-capacitor (SC) sigma-delta A/D interfaces for mixed-signal CMOS ASICs. The main focus of the book is on cascade architectures. It differs from other books in the complete, in-depth coverage of SC circuit errors.

Design Techniques for Wideband Low-power Delta-Sigma Analog-to-digital Converters

Design Techniques for Wideband Low-power Delta-Sigma Analog-to-digital Converters PDF Author: Yan Wang
Publisher:
ISBN:
Category : Analog-to-digital converters
Languages : en
Pages : 338

Get Book Here

Book Description
Delta-Sigma analog-to-digital converters (ADCs) are traditionally used in high quality audio systems, instrumentation and measurement (I&M) and biomedical devices. With the continued downscaling of CMOS technology, they are becoming popular in wideband applications such as wireless and wired communication systems,high-definition television and radar systems. There are two general realizations of a [Delta-Sigma] modulator. One is based on the discrete-time (DT) switched-capacitor (SC) circuitry and the other employs continuous-time (CT) circuitry. Compared to a CT structure, the DT [Delta-Sigma] ADC is easier to analyze and design, is more robust to process variations and jitter noise, and is more flexible in the multi-mode applications. On the other hand, the CT [Delta-Sigma] ADC does not suffer from the strict settling accuracy requirement for the loop filter and thus can achieve lower power dissipation and higher sampling frequency than its DT counterpart. In this thesis, both DT and CT [Delta-Sigma] ADCs are investigated. Several design innovations, in both system-level and circuit-level, are proposed to achieve lower power consumption and wider signal bandwidth. For DT [Delta-Sigma] ADCs, a new dynamic-biasing scheme is proposed to reduce opamp bias current and the associated signal-dependent harmonic distortion is minimized by using the low-distortion architecture. The technique was verified in a 2.5MHz BW and 13bit dynamic range DT [Delta-Sigma] ADC. In addition, a second-order noise coupling technique is presented to save two integrators for the loop filter, and to achieve low power dissipation. Also, a direct-charge-transfer (DCT) technique is suggested to reduce the speed requirements of the adder, which is also preferable in wideband low-power applications. For CT [Delta-Sigma] ADCs, a wideband low power CT 2-2 MASH has been designed. High linearity performance was achieved by using a modified low-distortion technique, and the modulator achieves higher noise-shaping ability than the single stage structure due to the inter-stage gain. Also, the quantization noise leakage due to analog circuit non-idealities can be adaptively compensated by a designed digital calibration filter. Using a 90nm process, simulation of the modulator predicts a 12bit resolution within 20MHz BW and consumes only 25mW for analog circuitry. In addition, the noise-coupling technique is investigated and proposed for the design of CT [Delta-Sigma] ADCs and it is promising to achieve low power dissipation for wideband applications. Finally, the application of noise-coupling technique is extended and introduced to high-accuracy incremental data converters. Low power dissipation can be expected.

Switched-Current Design and Implementation of Oversampling A/D Converters

Switched-Current Design and Implementation of Oversampling A/D Converters PDF Author: Nianxiong Tan
Publisher: Springer Science & Business Media
ISBN: 1461562074
Category : Technology & Engineering
Languages : en
Pages : 238

Get Book Here

Book Description
Switched-Current Design and Implementation of Oversampling A/D Converters discusses the switched-current (SI) technique and its application in oversampling A/D converters design. The SI technique is an analog sampled-data technique that fully exploits the digital CMOS process. Compared with the traditional switched-capacitor (SC) technique, the SI technique has both pros and cons that are highlighted in the book. With the consideration of similarity and difference of SI and SC techniques, oversampling A/D converter architectures are tailored and optimized for SI design and implementation in the book. Switched-Current Design and Implementation of Oversampling A/D Converters emphasizes the practical aspects of SI circuits without tedious mathematical derivations, and is full of circuit design and implementation examples. There are more than 10 different chips included in the book, demonstrating the high-speed (over 100 MHz) and ultra-low-voltage (1.2 V) operation of SI circuits and systems in standard digital CMOS processes. Therefore, the book is of special value as a practical guide for designing SI circuits and SI oversampling A/D converters. Switched-Current Design and Implementation of Oversampling A/D Converters serves as an excellent reference for analog designers, especially A/D converter designers, and is of interest to digital designers for real-time signal processing who need A/D interfaces. The book may also be used as a text for advanced courses on the subject.