Lectures on Analytic and Projective Geometry

Lectures on Analytic and Projective Geometry PDF Author: Dirk J. Struik
Publisher: Courier Corporation
ISBN: 0486485951
Category : Mathematics
Languages : en
Pages : 306

Get Book Here

Book Description
This undergraduate text develops the geometry of plane and space, leading up to conics and quadrics, within the context of metrical, affine, and projective transformations. 1953 edition.

Lectures on Analytic and Projective Geometry

Lectures on Analytic and Projective Geometry PDF Author: Dirk J. Struik
Publisher: Courier Corporation
ISBN: 0486485951
Category : Mathematics
Languages : en
Pages : 306

Get Book Here

Book Description
This undergraduate text develops the geometry of plane and space, leading up to conics and quadrics, within the context of metrical, affine, and projective transformations. 1953 edition.

Lectures on Analytic and Projective Geometry

Lectures on Analytic and Projective Geometry PDF Author: Dirk J. Struik
Publisher: Courier Corporation
ISBN: 0486173526
Category : Mathematics
Languages : en
Pages : 306

Get Book Here

Book Description
This undergraduate text develops the geometry of plane and space, leading up to conics and quadrics, within the context of metrical, affine, and projective transformations. 1953 edition.

Lectures on Analytic and Projective Geometry. --

Lectures on Analytic and Projective Geometry. -- PDF Author: Dirk Jan 1894- Struik
Publisher: Hassell Street Press
ISBN: 9781014340504
Category :
Languages : en
Pages : 314

Get Book Here

Book Description
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Lectures on Analytic and Projective Geometry

Lectures on Analytic and Projective Geometry PDF Author: Dirk J. Struik
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Lectures on Analytic Differential Equations

Lectures on Analytic Differential Equations PDF Author: I︠U︡. S. Ilʹi︠a︡shenko
Publisher: American Mathematical Soc.
ISBN: 0821836676
Category : Mathematics
Languages : en
Pages : 641

Get Book Here

Book Description
The book combines the features of a graduate-level textbook with those of a research monograph and survey of the recent results on analysis and geometry of differential equations in the real and complex domain. As a graduate textbook, it includes self-contained, sometimes considerably simplified demonstrations of several fundamental results, which previously appeared only in journal publications (desingularization of planar analytic vector fields, existence of analytic separatrices, positive and negative results on the Riemann-Hilbert problem, Ecalle-Voronin and Martinet-Ramis moduli, solution of the Poincare problem on the degree of an algebraic separatrix, etc.). As a research monograph, it explores in a systematic way the algebraic decidability of local classification problems, rigidity of holomorphic foliations, etc. Each section ends with a collection of problems, partly intended to help the reader to gain understanding and experience with the material, partly drafting demonstrations of the mor The exposition of the book is mostly geometric, though the algebraic side of the constructions is also prominently featured. on several occasions the reader is introduced to adjacent areas, such as intersection theory for divisors on the projective plane or geometric theory of holomorphic vector bundles with meromorphic connections. The book provides the reader with the principal tools of the modern theory of analytic differential equations and intends to serve as a standard source for references in this area.

Higher Geometry

Higher Geometry PDF Author: Frederick Shenstone Woods
Publisher:
ISBN:
Category : Geometry, Analytic
Languages : en
Pages : 435

Get Book Here

Book Description


Projective Geometry

Projective Geometry PDF Author: Albrecht Beutelspacher
Publisher: Cambridge University Press
ISBN: 9780521483643
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.

Berkeley Lectures on P-adic Geometry

Berkeley Lectures on P-adic Geometry PDF Author: Peter Scholze
Publisher: Princeton University Press
ISBN: 0691202095
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.

Lectures on Analytic and Projective Geometry. --

Lectures on Analytic and Projective Geometry. -- PDF Author: Dirk Jan 1894- Struik
Publisher: Hassell Street Press
ISBN: 9781013758348
Category :
Languages : en
Pages : 314

Get Book Here

Book Description
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

$p$-adic Geometry

$p$-adic Geometry PDF Author: Matthew Baker
Publisher: American Mathematical Soc.
ISBN: 0821844687
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
"In recent decades, p-adic geometry and p-adic cohomology theories have become indispensable tools in number theory, algebraic geometry, and the theory of automorphic representations. The Arizona Winter Schoo1 2007, on which the current book is based, was a unique opportunity to introduce graduate students to this subject." "Following invaluable introductions by John Tate and Vladimir Berkovich, two pioneers of non-archimedean geometry, Brian Conrad's chapter introduces the general theory of Tate's rigid analytic spaces, Raynaud's view of them as the generic fibers of formal schemes, and Berkovich spaces. Samit Dasgupta and Jeremy Teitelbaum discuss the p-adic upper half plane as an example of a rigid analytic space and give applications to number theory (modular forms and the p-adic Langlands program). Matthew Baker offers a detailed discussion of the Berkovich projective line and p-adic potential theory on that and more general Berkovich curves. Finally, Kiran Kedlaya discusses theoretical and computational aspects of p-adic cohomology and the zeta functions of varieties. This book will be a welcome addition to the library of any graduate student and researcher who is interested in learning about the techniques of p-adic geometry."--BOOK JACKET.