Author: Phil Bernstein
Publisher: Routledge
ISBN: 1000600688
Category : Architecture
Languages : en
Pages : 173
Book Description
‘The advent of machine learning-based AI systems demands that our industry does not just share toys, but builds a new sandbox in which to play with them.’ - Phil Bernstein The profession is changing. A new era is rapidly approaching when computers will not merely be instruments for data creation, manipulation and management, but, empowered by artificial intelligence, they will become agents of design themselves. Architects need a strategy for facing the opportunities and threats of these emergent capabilities or risk being left behind. Architecture’s best-known technologist, Phil Bernstein, provides that strategy. Divided into three key sections – Process, Relationships and Results – Machine Learning lays out an approach for anticipating, understanding and managing a world in which computers often augment, but may well also supplant, knowledge workers like architects. Armed with this insight, practices can take full advantage of the new technologies to future-proof their business. Features chapters on: Professionalism Tools and technologies Laws, policy and risk Delivery, means and methods Creating, consuming and curating data Value propositions and business models.
Machine Learning
Art in the Age of Machine Learning
Author: Sofian Audry
Publisher: MIT Press
ISBN: 0262367106
Category : Art
Languages : en
Pages : 215
Book Description
An examination of machine learning art and its practice in new media art and music. Over the past decade, an artistic movement has emerged that draws on machine learning as both inspiration and medium. In this book, transdisciplinary artist-researcher Sofian Audry examines artistic practices at the intersection of machine learning and new media art, providing conceptual tools and historical perspectives for new media artists, musicians, composers, writers, curators, and theorists. Audry looks at works from a broad range of practices, including new media installation, robotic art, visual art, electronic music and sound, and electronic literature, connecting machine learning art to such earlier artistic practices as cybernetics art, artificial life art, and evolutionary art. Machine learning underlies computational systems that are biologically inspired, statistically driven, agent-based networked entities that program themselves. Audry explains the fundamental design of machine learning algorithmic structures in terms accessible to the nonspecialist while framing these technologies within larger historical and conceptual spaces. Audry debunks myths about machine learning art, including the ideas that machine learning can create art without artists and that machine learning will soon bring about superhuman intelligence and creativity. Audry considers learning procedures, describing how artists hijack the training process by playing with evaluative functions; discusses trainable machines and models, explaining how different types of machine learning systems enable different kinds of artistic practices; and reviews the role of data in machine learning art, showing how artists use data as a raw material to steer learning systems and arguing that machine learning allows for novel forms of algorithmic remixes.
Publisher: MIT Press
ISBN: 0262367106
Category : Art
Languages : en
Pages : 215
Book Description
An examination of machine learning art and its practice in new media art and music. Over the past decade, an artistic movement has emerged that draws on machine learning as both inspiration and medium. In this book, transdisciplinary artist-researcher Sofian Audry examines artistic practices at the intersection of machine learning and new media art, providing conceptual tools and historical perspectives for new media artists, musicians, composers, writers, curators, and theorists. Audry looks at works from a broad range of practices, including new media installation, robotic art, visual art, electronic music and sound, and electronic literature, connecting machine learning art to such earlier artistic practices as cybernetics art, artificial life art, and evolutionary art. Machine learning underlies computational systems that are biologically inspired, statistically driven, agent-based networked entities that program themselves. Audry explains the fundamental design of machine learning algorithmic structures in terms accessible to the nonspecialist while framing these technologies within larger historical and conceptual spaces. Audry debunks myths about machine learning art, including the ideas that machine learning can create art without artists and that machine learning will soon bring about superhuman intelligence and creativity. Audry considers learning procedures, describing how artists hijack the training process by playing with evaluative functions; discusses trainable machines and models, explaining how different types of machine learning systems enable different kinds of artistic practices; and reviews the role of data in machine learning art, showing how artists use data as a raw material to steer learning systems and arguing that machine learning allows for novel forms of algorithmic remixes.
Robot-Proof, revised and updated edition
Author: Joseph E. Aoun
Publisher: MIT Press
ISBN: 0262549859
Category : Education
Languages : en
Pages : 221
Book Description
A fresh look at a “robot-proof” education in the new age of generative AI. In 2017, Robot-Proof, the first edition, foresaw the advent of the AI economy and called for a new model of higher education designed to help human beings flourish alongside smart machines. That economy has arrived. Creative tasks that, seven years ago, seemed resistant to automation can now be performed with a simple prompt. As a result, we must now learn not only to be conversant with these technologies, but also to comprehend and deploy their outputs. In this revised and updated edition, Joseph Aoun rethinks the university’s mission for a world transformed by AI, advocating for the lifelong endeavor of a “robot-proof” education. Aoun puts forth a framework for a new curriculum, humanics, which integrates technological, data, and human literacies in an experiential setting, and he renews the call for universities to embrace lifelong learning through a social compact with government, employers, and learners themselves. Drawing on the latest developments and debates around generative AI, Robot-Proof is a blueprint for the university as a force for human reinvention in an era of technological change—an era in which we must constantly renegotiate the shifting boundaries between artificial intelligence and the capacities that remain uniquely human.
Publisher: MIT Press
ISBN: 0262549859
Category : Education
Languages : en
Pages : 221
Book Description
A fresh look at a “robot-proof” education in the new age of generative AI. In 2017, Robot-Proof, the first edition, foresaw the advent of the AI economy and called for a new model of higher education designed to help human beings flourish alongside smart machines. That economy has arrived. Creative tasks that, seven years ago, seemed resistant to automation can now be performed with a simple prompt. As a result, we must now learn not only to be conversant with these technologies, but also to comprehend and deploy their outputs. In this revised and updated edition, Joseph Aoun rethinks the university’s mission for a world transformed by AI, advocating for the lifelong endeavor of a “robot-proof” education. Aoun puts forth a framework for a new curriculum, humanics, which integrates technological, data, and human literacies in an experiential setting, and he renews the call for universities to embrace lifelong learning through a social compact with government, employers, and learners themselves. Drawing on the latest developments and debates around generative AI, Robot-Proof is a blueprint for the university as a force for human reinvention in an era of technological change—an era in which we must constantly renegotiate the shifting boundaries between artificial intelligence and the capacities that remain uniquely human.
Linguistics for the Age of AI
Author: Marjorie Mcshane
Publisher: MIT Press
ISBN: 0262362600
Category : Computers
Languages : en
Pages : 449
Book Description
A human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems. One of the original goals of artificial intelligence research was to endow intelligent agents with human-level natural language capabilities. Recent AI research, however, has focused on applying statistical and machine learning approaches to big data rather than attempting to model what people do and how they do it. In this book, Marjorie McShane and Sergei Nirenburg return to the original goal of recreating human-level intelligence in a machine. They present a human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems that emphasizes meaning--the deep, context-sensitive meaning that a person derives from spoken or written language.
Publisher: MIT Press
ISBN: 0262362600
Category : Computers
Languages : en
Pages : 449
Book Description
A human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems. One of the original goals of artificial intelligence research was to endow intelligent agents with human-level natural language capabilities. Recent AI research, however, has focused on applying statistical and machine learning approaches to big data rather than attempting to model what people do and how they do it. In this book, Marjorie McShane and Sergei Nirenburg return to the original goal of recreating human-level intelligence in a machine. They present a human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems that emphasizes meaning--the deep, context-sensitive meaning that a person derives from spoken or written language.
Artificial Intelligence in Education
Author: Wayne Holmes
Publisher:
ISBN: 9781794293700
Category : Computers
Languages : en
Pages : 244
Book Description
"The landscape for education has been rapidly changing in the last years: demographic changes affecting the makeup of families, multiple school options available to children, wealth disparities, the global economy demanding new skills from workers, and continued breakthroughs in technology are some of the factors impacting education. Given these changes, how can schools continue to prepare students for the future? In a world where information is readily available online, how can schools continue to be relevant? The emergence of Artificial Intelligence (AI) has exacerbated the need to have these conversations. Its impact on education and the multiple possibilities that it offers are putting pressure on educational leaders to reformulate the school curriculum and the channels to deliver it. The book "Artificial Intelligence in Education, Promises and Implications for Teaching and Learning" by the Center for Curriculum Redesign immerses the reader in a discussion on what to teach students in the era of AI and examines how AI is already demanding much needed updates to the school curriculum, including modernizing its content, focusing on core concepts, and embedding interdisciplinary themes and competencies with the end goal of making learning more enjoyable and useful in students' lives. The second part of the book dives into the history of AI in education, its techniques and applications -including the way AI can help teachers be more effective, and finishes on a reflection about the social aspects of AI. This book is a must-read for educators and policy-makers who want to prepare schools to face the uncertainties of the future and keep them relevant." --Amada Torres, VP, Studies, Insights, and Research, National Association of Independent School (NAIS) "The rapid advances in technology in recent decades have already brought about substantial changes in education, opening up new opportunities to teach and learn anywhere anytime and providing new tools and methods to improve learning outcomes and support innovative teaching and learning.Research into artificial intelligence and machine learning in education goes back to the late 1970s. Artificial intelligence methods were generally employed in two ways: to design and facilitate interactive learning environments that would support learning by doing, and to design and implement tutoring systems by adapting instructions with respect to the students' knowledge state.But this is just the beginning. As Artificial Intelligence in Education shows, AI is increasingly used in education and learning contexts. The collision of three areas - data, computation and education - is set to have far-reaching consequences, raising fundamental questions about the nature of education: what is taught and how it is taught. Artificial Intelligence in Education is an important, if at times disturbing, contribution to the debate on AI and provides a detailed analysis on how it may affect the way teachers and students engage in education. The book describes how artificial intelligence may impact on curriculum design, on the individualisation of learning, and on assessment, offering some tantalising glimpses into the future (the end of exams, your very own lifelong learning companion) while not falling victim to tech-hype. The enormous ethical, technical and pedagogical challenges ahead are spelt out, and there is a real risk that the rapid advances in artificial intelligence products and services will outstrip education systems' capacity to understand, manage and integrate them appropriately. As the book concludes: "We can either leave it to others (the computer scientists, AI engineers and big tech companies) to decide how artificial intelligence in education unfolds, or we can engage in productive dialogue."I commend this book to anyone concerned with the future of education in a digital world." --Marc Durando, Executive Director, European Schoolnet
Publisher:
ISBN: 9781794293700
Category : Computers
Languages : en
Pages : 244
Book Description
"The landscape for education has been rapidly changing in the last years: demographic changes affecting the makeup of families, multiple school options available to children, wealth disparities, the global economy demanding new skills from workers, and continued breakthroughs in technology are some of the factors impacting education. Given these changes, how can schools continue to prepare students for the future? In a world where information is readily available online, how can schools continue to be relevant? The emergence of Artificial Intelligence (AI) has exacerbated the need to have these conversations. Its impact on education and the multiple possibilities that it offers are putting pressure on educational leaders to reformulate the school curriculum and the channels to deliver it. The book "Artificial Intelligence in Education, Promises and Implications for Teaching and Learning" by the Center for Curriculum Redesign immerses the reader in a discussion on what to teach students in the era of AI and examines how AI is already demanding much needed updates to the school curriculum, including modernizing its content, focusing on core concepts, and embedding interdisciplinary themes and competencies with the end goal of making learning more enjoyable and useful in students' lives. The second part of the book dives into the history of AI in education, its techniques and applications -including the way AI can help teachers be more effective, and finishes on a reflection about the social aspects of AI. This book is a must-read for educators and policy-makers who want to prepare schools to face the uncertainties of the future and keep them relevant." --Amada Torres, VP, Studies, Insights, and Research, National Association of Independent School (NAIS) "The rapid advances in technology in recent decades have already brought about substantial changes in education, opening up new opportunities to teach and learn anywhere anytime and providing new tools and methods to improve learning outcomes and support innovative teaching and learning.Research into artificial intelligence and machine learning in education goes back to the late 1970s. Artificial intelligence methods were generally employed in two ways: to design and facilitate interactive learning environments that would support learning by doing, and to design and implement tutoring systems by adapting instructions with respect to the students' knowledge state.But this is just the beginning. As Artificial Intelligence in Education shows, AI is increasingly used in education and learning contexts. The collision of three areas - data, computation and education - is set to have far-reaching consequences, raising fundamental questions about the nature of education: what is taught and how it is taught. Artificial Intelligence in Education is an important, if at times disturbing, contribution to the debate on AI and provides a detailed analysis on how it may affect the way teachers and students engage in education. The book describes how artificial intelligence may impact on curriculum design, on the individualisation of learning, and on assessment, offering some tantalising glimpses into the future (the end of exams, your very own lifelong learning companion) while not falling victim to tech-hype. The enormous ethical, technical and pedagogical challenges ahead are spelt out, and there is a real risk that the rapid advances in artificial intelligence products and services will outstrip education systems' capacity to understand, manage and integrate them appropriately. As the book concludes: "We can either leave it to others (the computer scientists, AI engineers and big tech companies) to decide how artificial intelligence in education unfolds, or we can engage in productive dialogue."I commend this book to anyone concerned with the future of education in a digital world." --Marc Durando, Executive Director, European Schoolnet
On the path to AI
Author: Thomas D. Grant
Publisher: Springer Nature
ISBN: 3030435822
Category : Social Science
Languages : en
Pages : 163
Book Description
This open access book explores machine learning and its impact on how we make sense of the world. It does so by bringing together two ‘revolutions’ in a surprising analogy: the revolution of machine learning, which has placed computing on the path to artificial intelligence, and the revolution in thinking about the law that was spurred by Oliver Wendell Holmes Jr in the last two decades of the 19th century. Holmes reconceived law as prophecy based on experience, prefiguring the buzzwords of the machine learning age—prediction based on datasets. On the path to AI introduces readers to the key concepts of machine learning, discusses the potential applications and limitations of predictions generated by machines using data, and informs current debates amongst scholars, lawyers and policy makers on how it should be used and regulated wisely. Technologists will also find useful lessons learned from the last 120 years of legal grappling with accountability, explainability, and biased data.
Publisher: Springer Nature
ISBN: 3030435822
Category : Social Science
Languages : en
Pages : 163
Book Description
This open access book explores machine learning and its impact on how we make sense of the world. It does so by bringing together two ‘revolutions’ in a surprising analogy: the revolution of machine learning, which has placed computing on the path to artificial intelligence, and the revolution in thinking about the law that was spurred by Oliver Wendell Holmes Jr in the last two decades of the 19th century. Holmes reconceived law as prophecy based on experience, prefiguring the buzzwords of the machine learning age—prediction based on datasets. On the path to AI introduces readers to the key concepts of machine learning, discusses the potential applications and limitations of predictions generated by machines using data, and informs current debates amongst scholars, lawyers and policy makers on how it should be used and regulated wisely. Technologists will also find useful lessons learned from the last 120 years of legal grappling with accountability, explainability, and biased data.
Learning for the Age of Artificial Intelligence
Author: Alan M. Lesgold
Publisher: Routledge
ISBN: 042968021X
Category : Education
Languages : en
Pages : 264
Book Description
Learning for the Age of Artificial Intelligence is a richly informed argument for curricular change to educate people towards achievement and success as intelligent machine systems proliferate. Describing eight key competences, this comprehensive volume prepares educational leaders, designers, researchers, and policymakers to effectively rethink the knowledge, skills, and environments that students need to thrive and avoid displacement in today’s technology-enhanced culture and workforce. Essential insights into school operations, machine learning, complex training and assessment, and economic challenges round out this cogent, relatable discussion about the imminent evolution of the education sector.
Publisher: Routledge
ISBN: 042968021X
Category : Education
Languages : en
Pages : 264
Book Description
Learning for the Age of Artificial Intelligence is a richly informed argument for curricular change to educate people towards achievement and success as intelligent machine systems proliferate. Describing eight key competences, this comprehensive volume prepares educational leaders, designers, researchers, and policymakers to effectively rethink the knowledge, skills, and environments that students need to thrive and avoid displacement in today’s technology-enhanced culture and workforce. Essential insights into school operations, machine learning, complex training and assessment, and economic challenges round out this cogent, relatable discussion about the imminent evolution of the education sector.
Competing in the Age of AI
Author: Marco Iansiti
Publisher: Harvard Business Press
ISBN: 1633697630
Category : Business & Economics
Languages : en
Pages : 181
Book Description
"a provocative new book" — The New York Times AI-centric organizations exhibit a new operating architecture, redefining how they create, capture, share, and deliver value. Now with a new preface that explores how the coronavirus crisis compelled organizations such as Massachusetts General Hospital, Verizon, and IKEA to transform themselves with remarkable speed, Marco Iansiti and Karim R. Lakhani show how reinventing the firm around data, analytics, and AI removes traditional constraints on scale, scope, and learning that have restricted business growth for hundreds of years. From Airbnb to Ant Financial, Microsoft to Amazon, research shows how AI-driven processes are vastly more scalable than traditional processes, allow massive scope increase, enabling companies to straddle industry boundaries, and create powerful opportunities for learning—to drive ever more accurate, complex, and sophisticated predictions. When traditional operating constraints are removed, strategy becomes a whole new game, one whose rules and likely outcomes this book will make clear. Iansiti and Lakhani: Present a framework for rethinking business and operating models Explain how "collisions" between AI-driven/digital and traditional/analog firms are reshaping competition, altering the structure of our economy, and forcing traditional companies to rearchitect their operating models Explain the opportunities and risks created by digital firms Describe the new challenges and responsibilities for the leaders of both digital and traditional firms Packed with examples—including many from the most powerful and innovative global, AI-driven competitors—and based on research in hundreds of firms across many sectors, this is your essential guide for rethinking how your firm competes and operates in the era of AI.
Publisher: Harvard Business Press
ISBN: 1633697630
Category : Business & Economics
Languages : en
Pages : 181
Book Description
"a provocative new book" — The New York Times AI-centric organizations exhibit a new operating architecture, redefining how they create, capture, share, and deliver value. Now with a new preface that explores how the coronavirus crisis compelled organizations such as Massachusetts General Hospital, Verizon, and IKEA to transform themselves with remarkable speed, Marco Iansiti and Karim R. Lakhani show how reinventing the firm around data, analytics, and AI removes traditional constraints on scale, scope, and learning that have restricted business growth for hundreds of years. From Airbnb to Ant Financial, Microsoft to Amazon, research shows how AI-driven processes are vastly more scalable than traditional processes, allow massive scope increase, enabling companies to straddle industry boundaries, and create powerful opportunities for learning—to drive ever more accurate, complex, and sophisticated predictions. When traditional operating constraints are removed, strategy becomes a whole new game, one whose rules and likely outcomes this book will make clear. Iansiti and Lakhani: Present a framework for rethinking business and operating models Explain how "collisions" between AI-driven/digital and traditional/analog firms are reshaping competition, altering the structure of our economy, and forcing traditional companies to rearchitect their operating models Explain the opportunities and risks created by digital firms Describe the new challenges and responsibilities for the leaders of both digital and traditional firms Packed with examples—including many from the most powerful and innovative global, AI-driven competitors—and based on research in hundreds of firms across many sectors, this is your essential guide for rethinking how your firm competes and operates in the era of AI.
Life 3.0
Author: Max Tegmark
Publisher: Vintage
ISBN: 1101946601
Category : Technology & Engineering
Languages : en
Pages : 385
Book Description
New York Times Best Seller How will Artificial Intelligence affect crime, war, justice, jobs, society and our very sense of being human? The rise of AI has the potential to transform our future more than any other technology—and there’s nobody better qualified or situated to explore that future than Max Tegmark, an MIT professor who’s helped mainstream research on how to keep AI beneficial. How can we grow our prosperity through automation without leaving people lacking income or purpose? What career advice should we give today’s kids? How can we make future AI systems more robust, so that they do what we want without crashing, malfunctioning or getting hacked? Should we fear an arms race in lethal autonomous weapons? Will machines eventually outsmart us at all tasks, replacing humans on the job market and perhaps altogether? Will AI help life flourish like never before or give us more power than we can handle? What sort of future do you want? This book empowers you to join what may be the most important conversation of our time. It doesn’t shy away from the full range of viewpoints or from the most controversial issues—from superintelligence to meaning, consciousness and the ultimate physical limits on life in the cosmos.
Publisher: Vintage
ISBN: 1101946601
Category : Technology & Engineering
Languages : en
Pages : 385
Book Description
New York Times Best Seller How will Artificial Intelligence affect crime, war, justice, jobs, society and our very sense of being human? The rise of AI has the potential to transform our future more than any other technology—and there’s nobody better qualified or situated to explore that future than Max Tegmark, an MIT professor who’s helped mainstream research on how to keep AI beneficial. How can we grow our prosperity through automation without leaving people lacking income or purpose? What career advice should we give today’s kids? How can we make future AI systems more robust, so that they do what we want without crashing, malfunctioning or getting hacked? Should we fear an arms race in lethal autonomous weapons? Will machines eventually outsmart us at all tasks, replacing humans on the job market and perhaps altogether? Will AI help life flourish like never before or give us more power than we can handle? What sort of future do you want? This book empowers you to join what may be the most important conversation of our time. It doesn’t shy away from the full range of viewpoints or from the most controversial issues—from superintelligence to meaning, consciousness and the ultimate physical limits on life in the cosmos.
Architecture in the Age of Artificial Intelligence
Author: Neil Leach
Publisher: Bloomsbury Publishing
ISBN: 1350165549
Category : Architecture
Languages : en
Pages : 281
Book Description
Artificial intelligence is everywhere – from the apps on our phones to the algorithms of search engines. Without us noticing, the AI revolution has arrived. But what does this mean for the world of design? The first volume in a two-book series, Architecture in the Age of Artificial Intelligence introduces AI for designers and considers its positive potential for the future of architecture and design. Explaining what AI is and how it works, the book examines how different manifestations of AI will impact the discipline and profession of architecture. Highlighting current case-studies as well as near-future applications, it shows how AI is already being used as a powerful design tool, and how AI-driven information systems will soon transform the design of buildings and cities. Far-sighted, provocative and challenging, yet rooted in careful research and cautious speculation, this book, written by architect and theorist Neil Leach, is a must-read for all architects and designers – including students of architecture and all design professionals interested in keeping their practice at the cutting edge of technology.
Publisher: Bloomsbury Publishing
ISBN: 1350165549
Category : Architecture
Languages : en
Pages : 281
Book Description
Artificial intelligence is everywhere – from the apps on our phones to the algorithms of search engines. Without us noticing, the AI revolution has arrived. But what does this mean for the world of design? The first volume in a two-book series, Architecture in the Age of Artificial Intelligence introduces AI for designers and considers its positive potential for the future of architecture and design. Explaining what AI is and how it works, the book examines how different manifestations of AI will impact the discipline and profession of architecture. Highlighting current case-studies as well as near-future applications, it shows how AI is already being used as a powerful design tool, and how AI-driven information systems will soon transform the design of buildings and cities. Far-sighted, provocative and challenging, yet rooted in careful research and cautious speculation, this book, written by architect and theorist Neil Leach, is a must-read for all architects and designers – including students of architecture and all design professionals interested in keeping their practice at the cutting edge of technology.