Lean Premixed Flame Structure in Intense Turbulence

Lean Premixed Flame Structure in Intense Turbulence PDF Author: Sastri Purushottama Nandula
Publisher:
ISBN:
Category : Flame
Languages : en
Pages : 364

Get Book Here

Book Description

Lean Premixed Flame Structure in Intense Turbulence

Lean Premixed Flame Structure in Intense Turbulence PDF Author: Sastri Purushottama Nandula
Publisher:
ISBN:
Category : Flame
Languages : en
Pages : 364

Get Book Here

Book Description


Turbulent Premixed Flames

Turbulent Premixed Flames PDF Author: Nedunchezhian Swaminathan
Publisher: Cambridge University Press
ISBN: 1139498584
Category : Technology & Engineering
Languages : en
Pages : 447

Get Book Here

Book Description
A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.

Response of Flame Thickness and Propagation Speed Under Intense Turbulence in Spatially Developing Lean Premixed Methane-air Jet Flames

Response of Flame Thickness and Propagation Speed Under Intense Turbulence in Spatially Developing Lean Premixed Methane-air Jet Flames PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 13

Get Book Here

Book Description
In this study, direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. The simulations were performed using a reduced methane-air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane-air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.

Fundamentals of Premixed Turbulent Combustion

Fundamentals of Premixed Turbulent Combustion PDF Author: Andrei Lipatnikov
Publisher: CRC Press
ISBN: 1466510242
Category : Science
Languages : en
Pages : 551

Get Book Here

Book Description
Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine combustors. Yet researchers face several challenges in dealing with premixed turbulent combustion, from its nonlinear multiscale nature and the impact of local phenomena to the multitude of competing models. Filling a gap in the literature, Fundamentals of Premixed Turbulent Combustion introduces the state of the art of premixed turbulent combustion in an accessible manner for newcomers and experienced researchers alike. To more deeply consider current research issues, the book focuses on the physical mechanisms and phenomenology of premixed flames, with a brief discussion of recent advances in partially premixed turbulent combustion. It begins with a summary of the relevant knowledge needed from disciplines such as thermodynamics, chemical kinetics, molecular transport processes, and fluid dynamics. The book then presents experimental data on the general appearance of premixed turbulent flames and details the physical mechanisms that could affect the flame behavior. It also examines the physical and numerical models for predicting the key features of premixed turbulent combustion. Emphasizing critical analysis, the book compares competing concepts and viewpoints with one another and with the available experimental data, outlining the advantages and disadvantages of each approach. In addition, it discusses recent advances and highlights unresolved issues. Written by a leading expert in the field, this book provides a valuable overview of the physics of premixed turbulent combustion. Combining simplicity and topicality, it helps researchers orient themselves in the contemporary literature and guides them in selecting the best research tools for their work.

Response of Flame Thickness and Propagation Speed Under Intense Turbulence in Spatially Developing Lean Premixed Methane{u2013}air Jet Flames

Response of Flame Thickness and Propagation Speed Under Intense Turbulence in Spatially Developing Lean Premixed Methane{u2013}air Jet Flames PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 13

Get Book Here

Book Description
Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.

Turbulent Combustion

Turbulent Combustion PDF Author: Norbert Peters
Publisher: Cambridge University Press
ISBN: 1139428063
Category : Science
Languages : en
Pages : 322

Get Book Here

Book Description
The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

Lean Combustion

Lean Combustion PDF Author: Derek Dunn-Rankin
Publisher: Academic Press
ISBN: 0080550525
Category : Technology & Engineering
Languages : en
Pages : 282

Get Book Here

Book Description
Combustion under sufficiently fuel-lean conditions can have the desirable attributes of high efficiency and low emissions, this being particularly important in light of recent and rapid increases in the cost of fossil fuels and concerns over the links between combustion and global climate change. Lean Combustion is an eminently authoritative, reference work on the latest advances in lean combustion technology and systems. It will offer engineers working on combustion equipment and systems both the fundamentals and the latest developments in more efficient fuel usage and in much-sought-after reductions of undesirable emissions, while still achieving desired power output and performance. This volume brings together research and design of lean combustion systems across the technology spectrum in order to explore the state-of-the-art in lean combustion and its role in meeting current and future demands on combustion systems. Readers will learn about advances in the understanding of ultra lean fuel mixtures and how new types of burners and approaches to managing heat flow can reduce problems often found with lean combustion such as slow, difficult ignition and frequent flame extinction. The book will also offer abundant references and examples of recent real-world applications. Covers all major recent developments in lean combustion science and technology, with new applications in both traditional combustion schemes as well as such novel uses as highly preheated and hydrogen-fueled systems Offers techniques for overcoming difficult ignition problems and flame extinction with lean fuel mixtures Covers new developments in lean combustion using high levels of pre-heat and heat re-circulating burners, as well as the active control of lean combustion instabilities

Advanced Turbulent Combustion Physics and Applications

Advanced Turbulent Combustion Physics and Applications PDF Author: N. Swaminathan
Publisher: Cambridge University Press
ISBN: 1108572758
Category : Technology & Engineering
Languages : en
Pages :

Get Book Here

Book Description
Explore a thorough and up to date overview of the current knowledge, developments and outstanding challenges in turbulent combustion and application. The balance among various renewable and combustion technologies are surveyed, and numerical and experimental tools are discussed along with recent advances. Covers combustion of gaseous, liquid and solid fuels and subsonic and supersonic flows. This detailed insight into the turbulence-combustion coupling with turbulence and other physical aspects, shared by a number of the world leading experts in the field, makes this an excellent reference for graduate students, researchers and practitioners in the field.

Experimental Study of Premixed Flames in Intense Isotropic Turbulence

Experimental Study of Premixed Flames in Intense Isotropic Turbulence PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 22

Get Book Here

Book Description
A methodology for investigating premixed turbulent flames propagating in intense isotropic turbulence has been developed. The burner uses a turbulence generator developed by Videto and Santavicca and the flame is stabilized by weak-swirl generated by air injectors. This set-up produces stable premixed turbulent flames under a wide range of mixture conditions and turbulence intensities. The experiments are designed to investigate systematically the changes in flame structures for conditions which can be classified as wrinkled laminar flames, corrugated flames and flames with distributed reaction zones. Laser Doppler anemometry and Rayleigh scattering techniques are used to determine the turbulence and scalar statistics. In the intense turbulence, the flames are found to produce very little changes in the mean and rams velocities. Their flame speed increase linearly with turbulence intensity as for wrinkled laminar flames. The Rayleigh scattering pdfs for flames within the distributed reaction zone regime are distinctly bimodal. The probabilities of the reacting states (i.e. contributions from within the reaction zone) is not higher than those of wrinkled laminar flame. These results show that there is no drastic changes in flame structures at Karlovitz number close to unity. This suggest that the Klimov-Williams criterion under-predicts the resilience of wrinkled flamelets to intense turbulence.

Experimental Investigation of the Dynamics and Structure of Lean-premixed Turbulent Combustion

Experimental Investigation of the Dynamics and Structure of Lean-premixed Turbulent Combustion PDF Author: Frank Tat Cheong Yuen
Publisher:
ISBN: 9780494608951
Category :
Languages : en
Pages : 306

Get Book Here

Book Description
Turbulent premixed propane/air and methane/air flames were studied using planar Rayleigh scattering and particle image velocimetry on a stabilized Bunsen type burner. The fuel-air equivalence ratio was varied from &phis; = 0:7 to 1.0 for propane flames, and from &phis; = 0:6 to 1.0 for methane flames. The non-dimensional turbulence intensity, u'/ SL (ratio of fluctuation velocity to laminar burning velocity), covered the range from 3 to 24, equivalent to conditions of corrugated flamelets and thin reaction zones regimes. Temperature gradients decreased with the increasing u'/SL and levelled off beyond u'/SL > 10 for both propane and methane flames. Flame front thickness increased slightly as u'/SL increased for both mixtures, although the thickness increase was more noticeable for propane flames, which meant the thermal flame front structure was being thickened. A zone of higher temperature was observed on the average temperature profile in the preheat zone of the flame front as well as some instantaneous temperature profiles at the highest u'/SL. Curvature probability density functions were similar to the Gaussian distribution at all u'/ SL for both mixtures and for all the flame sections. The mean curvature values decreased as a function of u'/ SL and approached zero. Flame front thickness was smaller when evaluated at flame front locations with zero curvature than that with curvature. Temperature gradients and FSD were larger when the flame curvature was zero. The combined thickness and FSD data suggest that the curvature effect is more dominant than that of the stretch by turbulent eddies during flame propagation. Integrated flame surface density for both propane and methane flames exhibited no dependance on u'/S L regardless of the FSD method used for evaluation. This observation implies that flame surface area may not be the dominant factor in increasing the turbulent burning velocity and the flamelet assumption may not be valid under the conditions studied. Dkappa term, the product of diffusivity evaluated at conditions studied and the flame front curvature, was a magnitude smaller than or the same magnitude as the laminar burning velocity.