Interface Engineering and Characterization in Dye and Quantum Dot-sensitized Solar Cells

Interface Engineering and Characterization in Dye and Quantum Dot-sensitized Solar Cells PDF Author: Thomas P. Brennan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The increasing demand for energy as standards of living and population sizes rise across the globe motivates the development of scalable resources to meet the forecasted doubling of energy consumption. This challenge is further compounded by the need to reduce the CO2 emissions associated with our current level of energy consumption in order to stave off costly changes in the global climate. Solar energy promises renewable, carbon-free energy and a resource that is orders of magnitude larger than alternative sources. Capturing this solar energy with photovoltaic devices has become an increasingly economical means of energy production, but further development is needed to make solar energy conversion inexpensive and ubiquitous. One particular class of photovoltaics--the dye-sensitized solar cell (DSSC)--is especially appealing because it can be constructed with abundant, inexpensive materials and be engineered in a modular fashion for a wide array of product applications. Challenges remain, however, in order to make DSSCs more efficient, more economical, and more practical. The DSSC architecture is quite different than traditional--i.e. silicon and thin film inorganic--photovoltaics in that light harvesting and charge collection are decoupled. This is achieved by depositing a thin nanometer-scale layer of light-absorbing dye molecules atop a high surface area nanostructured TiO2 anode. The consequence of this architecture, however, is an abundance of interfacial area at which deleterious charge recombination processes can occur. Further improvements in DSSC performance therefore require a thorough understanding of and high control over the dual-interface that exists between the dye layer and the electron-conducting anode and the dye layer and the hole-transporting material (HTM). In the first part of this work we describe the application of thin, sub-nanometer insulating metal oxide layers grown by atomic layer deposition (ALD) to the TiO2 anode for the purpose of slowing down the undesirable back-recombination of electrons injected into TiO2 by the light-absorbing dye molecules. We use the well-characterized insulator Al2O3 as a recombination barrier material and perform a comprehensive study of different parameters that impact how such barriers change device performance. In a solid-state DSSC we demonstrate the importance of the dye chemical structure and the anode fabrication process in dictating whether or not improvements achieved through the recombination suppression outweigh device current losses that result from the insertion of an insulating layer. We apply these lessons to a new barrier layer material, In2O3, that unlike Al2O3 has not been previously well-characterized but is less-insulating and can be grown at an extremely low growth rate, providing excellent control over the competing consequences of barrier layers. With In2O3 we are able to demonstrate some of the highest ever reported open-circuit voltages for this class of DSSC and we observe an unexpected change in behavior as the In2O3 barriers reach a certain thickness. In our third barrier layer study, we achieve a near-doubling in efficiency when Al2O3 is applied to a quantum dot-sensitized solar cell, a close analogue of the DSSC, wherein recombination more severely limits device performance. In the second part of this work, we combine experimental and computational techniques to study the dye/anode interface and the orientation of dye molecules adsorbed on a TiO2 surface. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is used to measure the angles of individual bonds and in turn deduce the full geometry of adsorbed dye molecules. This result is compared to computational simulations using density functional theory-molecular dynamics (DFT-MD) of the same dye/TiO2 system. Our results show remarkable correspondence between the experimental and computational approaches and signify important consequences for understanding the dye/anode interface in DSSCs as well as adsorbate/substrate studies more generally.

Interface Engineering and Characterization in Dye and Quantum Dot-sensitized Solar Cells

Interface Engineering and Characterization in Dye and Quantum Dot-sensitized Solar Cells PDF Author: Thomas P. Brennan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The increasing demand for energy as standards of living and population sizes rise across the globe motivates the development of scalable resources to meet the forecasted doubling of energy consumption. This challenge is further compounded by the need to reduce the CO2 emissions associated with our current level of energy consumption in order to stave off costly changes in the global climate. Solar energy promises renewable, carbon-free energy and a resource that is orders of magnitude larger than alternative sources. Capturing this solar energy with photovoltaic devices has become an increasingly economical means of energy production, but further development is needed to make solar energy conversion inexpensive and ubiquitous. One particular class of photovoltaics--the dye-sensitized solar cell (DSSC)--is especially appealing because it can be constructed with abundant, inexpensive materials and be engineered in a modular fashion for a wide array of product applications. Challenges remain, however, in order to make DSSCs more efficient, more economical, and more practical. The DSSC architecture is quite different than traditional--i.e. silicon and thin film inorganic--photovoltaics in that light harvesting and charge collection are decoupled. This is achieved by depositing a thin nanometer-scale layer of light-absorbing dye molecules atop a high surface area nanostructured TiO2 anode. The consequence of this architecture, however, is an abundance of interfacial area at which deleterious charge recombination processes can occur. Further improvements in DSSC performance therefore require a thorough understanding of and high control over the dual-interface that exists between the dye layer and the electron-conducting anode and the dye layer and the hole-transporting material (HTM). In the first part of this work we describe the application of thin, sub-nanometer insulating metal oxide layers grown by atomic layer deposition (ALD) to the TiO2 anode for the purpose of slowing down the undesirable back-recombination of electrons injected into TiO2 by the light-absorbing dye molecules. We use the well-characterized insulator Al2O3 as a recombination barrier material and perform a comprehensive study of different parameters that impact how such barriers change device performance. In a solid-state DSSC we demonstrate the importance of the dye chemical structure and the anode fabrication process in dictating whether or not improvements achieved through the recombination suppression outweigh device current losses that result from the insertion of an insulating layer. We apply these lessons to a new barrier layer material, In2O3, that unlike Al2O3 has not been previously well-characterized but is less-insulating and can be grown at an extremely low growth rate, providing excellent control over the competing consequences of barrier layers. With In2O3 we are able to demonstrate some of the highest ever reported open-circuit voltages for this class of DSSC and we observe an unexpected change in behavior as the In2O3 barriers reach a certain thickness. In our third barrier layer study, we achieve a near-doubling in efficiency when Al2O3 is applied to a quantum dot-sensitized solar cell, a close analogue of the DSSC, wherein recombination more severely limits device performance. In the second part of this work, we combine experimental and computational techniques to study the dye/anode interface and the orientation of dye molecules adsorbed on a TiO2 surface. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is used to measure the angles of individual bonds and in turn deduce the full geometry of adsorbed dye molecules. This result is compared to computational simulations using density functional theory-molecular dynamics (DFT-MD) of the same dye/TiO2 system. Our results show remarkable correspondence between the experimental and computational approaches and signify important consequences for understanding the dye/anode interface in DSSCs as well as adsorbate/substrate studies more generally.

Third Generation Photovoltaic Technology

Third Generation Photovoltaic Technology PDF Author: Alagarsamy Pandikumar
Publisher: Materials Research Forum LLC
ISBN: 1644903032
Category : Technology & Engineering
Languages : en
Pages : 173

Get Book Here

Book Description
Third-generation solar cells (SCs) are built on inorganic nanoparticles, hybrids, or semiconducting organic macromolecules. This book focuses on dye-sensitized solar cells, polymer/organic solar cells, copper/zinc/tin sulfide thin film cells, quantum dot solar cells and perovskite-based solar cells. Specific topics covered include device architecture, interface engineering, characterization, and fabrication techniques such as spin coating, blade coating, slot-die coating, dip coating, meniscus coating, spray coating, ink-jet printing, screen printing and electro deposition. Keywords: Fullerene-Containing Polymers, Light-Sensitive Dye, Organic Solar Cells, Perovskite Film, Quantum Dots, Thin Film Solar Cells.

Rational Design of Solar Cells for Efficient Solar Energy Conversion

Rational Design of Solar Cells for Efficient Solar Energy Conversion PDF Author: Alagarsamy Pandikumar
Publisher: John Wiley & Sons
ISBN: 1119437407
Category : Science
Languages : en
Pages : 396

Get Book Here

Book Description
An interdisciplinary guide to the newest solar cell technology for efficient renewable energy Rational Design of Solar Cells for Efficient Solar Energy Conversion explores the development of the most recent solar technology and materials used to manufacture solar cells in order to achieve higher solar energy conversion efficiency. The text offers an interdisciplinary approach and combines information on dye-sensitized solar cells, organic solar cells, polymer solar cells, perovskite solar cells, and quantum dot solar cells. The text contains contributions from noted experts in the fields of chemistry, physics, materials science, and engineering. The authors review the development of components such as photoanodes, sensitizers, electrolytes, and photocathodes for high performance dye-sensitized solar cells. In addition, the text puts the focus on the design of material assemblies to achieve higher solar energy conversion. This important resource: Offers a comprehensive review of recent developments in solar cell technology Includes information on a variety of solar cell materials and devices, focusing on dye-sensitized solar cells Contains a thorough approach beginning with the fundamental material characterization and concluding with real-world device application. Presents content from researchers in multiple fields of study such as physicists, engineers, and material scientists Written for researchers, scientists, and engineers in university and industry laboratories, Rational Design of Solar Cells for Efficient Solar Energy Conversion offers a comprehensive review of the newest developments and applications of solar cells with contributions from a range of experts in various disciplines.

Quantum Dot Sensitized Solar Cell: Optical Characterization of Semiconductor Quantum Dot for Next Generation Solar Cell

Quantum Dot Sensitized Solar Cell: Optical Characterization of Semiconductor Quantum Dot for Next Generation Solar Cell PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Characterization Techniques for Perovskite Solar Cell Materials

Characterization Techniques for Perovskite Solar Cell Materials PDF Author: Meysam Pazoki
Publisher: Elsevier
ISBN: 0128147288
Category : Technology & Engineering
Languages : en
Pages : 278

Get Book Here

Book Description
Characterization Techniques for Perovskite Solar Cell Materials: Characterization of Recently Emerged Perovskite Solar Cell Materials to Provide an Understanding of the Fundamental Physics on the Nano Scale and Optimize the Operation of the Device Towards Stable and Low-Cost Photovoltaic Technology explores the characterization of nanocrystals of the perovskite film, related interfaces, and the overall impacts of these properties on device efficiency. Included is a collection of both main and research techniques for perovskite solar cells. For the first time, readers will have a complete reference of different characterization techniques, all housed in a work written by highly experienced experts. Explores various characterization techniques for perovskite solar cells and discusses both their strengths and weaknesses Discusses material synthesis and device fabrication of perovskite solar cells Includes a comparison throughout the work on how to distinguish one perovskite solar cell from another

Sustainable Green Catalytic Processes

Sustainable Green Catalytic Processes PDF Author: Mousumi Sen
Publisher: John Wiley & Sons
ISBN: 1394212550
Category : Science
Languages : en
Pages : 564

Get Book Here

Book Description
Did you know that 95% of chemicals in industry are synthesized using catalysts? Sustainable Green Catalytic Processes offer concise descriptions of the application of catalysts in orchestrating eco-friendly transformation. These catalysts have enhanced selectivity for desired products while minimizing the creation of unwanted products. The book aims to present a collection of chapters related to green synthesis and methodologies and their applications in catalysis. These approaches have garnered attention from scientists in developing sustainable catalyst protocols that are environmentally greener and eco-friendly. This book aims to present a collection of chapters related to green synthesis and methodologies to motivate biochemists and engineers to provide a more sustainable environmental process. The first chapter focuses on the creation of ecologically friendly chemical processes. Another chapter frames the recent advances in heterogeneous photocatalysis and its applications. The book gives insights into the mechanisms underlying the total synthesis and functionalization of natural products through light-driven reactions. It reflects the new challenges as the chemical industry transitions to environmentally friendly and sustainable chemistry.

Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells

Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells PDF Author: Alagarsamy Pandikumar
Publisher: John Wiley & Sons
ISBN: 111955733X
Category : Science
Languages : en
Pages : 288

Get Book Here

Book Description
Offers an Interdisciplinary approach to the engineering of functional materials for efficient solar cell technology Written by a collection of experts in the field of solar cell technology, this book focuses on the engineering of a variety of functional materials for improving photoanode efficiency of dye-sensitized solar cells (DSSC). The first two chapters describe operation principles of DSSC, charge transfer dynamics, as well as challenges and solutions for improving DSSCs. The remaining chapters focus on interfacial engineering of functional materials at the photoanode surface to create greater output efficiency. Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells begins by introducing readers to the history, configuration, components, and working principles of DSSC It then goes on to cover both nanoarchitectures and light scattering materials as photoanode. Function of compact (blocking) layer in the photoanode and of TiCl4 post-treatment in the photoanode are examined at next. Next two chapters look at photoanode function of doped semiconductors and binary semiconductor metal oxides. Other chapters consider nanocomposites, namely, plasmonic nanocomposites, carbon nanotube based nanocomposites, graphene based nanocomposites, and graphite carbon nitride based nanocompositesas photoanodes. The book: Provides comprehensive coverage of the fundamentals through the applications of DSSC Encompasses topics on various functional materials for DSSC technology Focuses on the novel design and application of materials in DSSC, to develop more efficient renewable energy sources Is useful for material scientists, engineers, physicists, and chemists interested in functional materials for the design of efficient solar cells Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells will be of great benefit to graduate students, researchers and engineers, who work in the multi-disciplinary areas of material science, engineering, physics, and chemistry.

Solar Cells

Solar Cells PDF Author: S. K. Sharma
Publisher: Springer Nature
ISBN: 3030363546
Category : Technology & Engineering
Languages : en
Pages : 354

Get Book Here

Book Description
This book addresses the rapidly developing class of solar cell materials and designed to provide much needed information on the fundamental principles of these materials, together with how these are employed in photovoltaic applications. A special emphasize have been given for the space applications through study of radiation tolerant solar cells. This book present a comprehensive research outlining progress on the synthesis, fabrication and application of solar cells from fundamental to device technology and is helpful for graduate students, researchers, and technologists engaged in research and development of materials.

Comprehensive Guide on Organic and Inorganic Solar Cells

Comprehensive Guide on Organic and Inorganic Solar Cells PDF Author: Md. Akhtaruzzaman
Publisher: Academic Press
ISBN: 0323858074
Category : Science
Languages : en
Pages : 420

Get Book Here

Book Description
Comprehensive Guide on Organic and Inorganic Solar Cells: Fundamental Concepts to Fabrication Methods is a one-stop, authoritative resource on all types of inorganic, organic and hybrid solar cells, including their theoretical background and the practical knowledge required for fabrication. With chapters rigorously dedicated to a particular type of solar cell, each subchapter takes a detailed look at synthesis recipes, deposition techniques, materials properties and their influence on solar cell performance, including advanced characterization methods with materials selection and experimental techniques. By addressing the evolution of solar cell technologies, second generation thin-film photovoltaics, organic solar cells, and finally, the latest hybrid organic-inorganic approaches, this book benefits students and researchers in solar cell technology to understand the similarities, differences, benefits and challenges of each device. Introduces the basic concepts of different photovoltaic cells to audiences from a wide variety of academic backgrounds Consists of working principles of a particular category of solar technology followed by dissection of every component within the architecture Crucial experimental procedures for the fabrication of solar cell devices are introduced, aiding picture practical application of the technology

Nanostructures

Nanostructures PDF Author: Sadia Ameen
Publisher: BoD – Books on Demand
ISBN: 1789239931
Category : Technology & Engineering
Languages : en
Pages : 146

Get Book Here

Book Description
This book highlights the functionality, significance, and applicability of nanostructure materials. The chapters in this book provide the logical and comprehensive information pertaining to the recent advances in the synthesis, characterization, and application of nanostructure materials for energy conversion and sensors. Written by an outstanding group of experts in the field, this book presents the latest advances and developments in nanostructure materials. We hope this book will help in describing the current position of nanostructure materials in the technological sphere as well as encourage scientists and engineers in deeper exploration of nanostructure materials to boost the technological advancement.