Interactions Between Spin Transport and Dynamics Studied Using Spatially Resolved Imaging and Magnetic Resonance

Interactions Between Spin Transport and Dynamics Studied Using Spatially Resolved Imaging and Magnetic Resonance PDF Author: Michael Roy Page
Publisher:
ISBN:
Category :
Languages : en
Pages : 234

Get Book Here

Book Description
In this dissertation, I explore the interactions that occur between transported spins and magnetization dynamics using spatially resolved imaging and magnetic resonance. The integration of spin transport and dynamics will be a crucial aspect of realizing spintronic devices, which seek to improve upon current charge based electronics. Rather than focusing on the charge degree of freedom as in traditional electronics, spintronics seeks to utilize the properties of the electron spin degree of freedom to revolutionize the fundamental operating principles of data processing and storage devices. Spintronics promises greater functionality and energy efficiency in devices based on electron spin. However, improved understanding and control of the spin degree of freedom is required for spintronics to reach its full potential. The work in this dissertation represents efforts towards addressing these requirements. I discuss my work relating to the development of a custom scanned probe microscope allowing simultaneous spatially resolved imaging while imposing transport in electrically active spintronic devices. Using this microscope, I correlate the switching of magnetic electrodes in a graphene spin valve to the resistance states by directly imaging the electrode magnetization configuration while simultaneously measuring the non-local magnetoresistance. I investigate interactions between a ferromagnet driven into resonance and proximal nitrogen vacancy centers in diamond. Spinwaves generated during the decay of the uniform mode driven to ferromagnetic resonance relax the diamond nitrogen vacancy center spins resulting in a change in the fluorescence intensity. This technique allows the study of transport of angular momentum between two separated spin systems, as well as the possibility for the nanoscale imaging of magnetization dynamics. I demonstrate Heusler alloy ferromagnetic materials as high spin polarization spin injectors for device applications by studying their magnetoresistive output as a function of composition at room and low temperatures. Spin injection efficiency is another important aspect in the performance of spintronic devices, and optimization of spin injection will be of importance in creating realistic devices. Another promising avenue for spin injection relies on the spin Hall effect. I discuss efforts at using the spin Hall effect in platinum to inject spins into an aluminum channel to be detected in another platinum electrode by the inverse spin Hall effect without the need for a ferromagnet, thus reducing complications resulting from the stray field of typical ferromagnetic injectors. I discuss exploration of spin pumping devices based on metallic and insulating ferromagnet/graphene bilayers using ferromagnetic resonance and electrical detection of the inverse spin Hall effect. Spin pumping represents another opportunity to study interactions of spin transport and magnetization dynamics, in this case leveraged for efficient spin injection. Finally, I perform magnetic resonance measurements of thin film iron germanium skyrmionic candidate materials. Skrymions are a candidate for high density and low power magnetic recording. Measuring the dynamics of these materials will be important for a full characterization of their properties. I demonstrate detection of multiple magnetic phases in this material, and show evidence of large internal fields, which may be of interest in stabilizing skrymions in thin films.

Interactions Between Spin Transport and Dynamics Studied Using Spatially Resolved Imaging and Magnetic Resonance

Interactions Between Spin Transport and Dynamics Studied Using Spatially Resolved Imaging and Magnetic Resonance PDF Author: Michael Roy Page
Publisher:
ISBN:
Category :
Languages : en
Pages : 234

Get Book Here

Book Description
In this dissertation, I explore the interactions that occur between transported spins and magnetization dynamics using spatially resolved imaging and magnetic resonance. The integration of spin transport and dynamics will be a crucial aspect of realizing spintronic devices, which seek to improve upon current charge based electronics. Rather than focusing on the charge degree of freedom as in traditional electronics, spintronics seeks to utilize the properties of the electron spin degree of freedom to revolutionize the fundamental operating principles of data processing and storage devices. Spintronics promises greater functionality and energy efficiency in devices based on electron spin. However, improved understanding and control of the spin degree of freedom is required for spintronics to reach its full potential. The work in this dissertation represents efforts towards addressing these requirements. I discuss my work relating to the development of a custom scanned probe microscope allowing simultaneous spatially resolved imaging while imposing transport in electrically active spintronic devices. Using this microscope, I correlate the switching of magnetic electrodes in a graphene spin valve to the resistance states by directly imaging the electrode magnetization configuration while simultaneously measuring the non-local magnetoresistance. I investigate interactions between a ferromagnet driven into resonance and proximal nitrogen vacancy centers in diamond. Spinwaves generated during the decay of the uniform mode driven to ferromagnetic resonance relax the diamond nitrogen vacancy center spins resulting in a change in the fluorescence intensity. This technique allows the study of transport of angular momentum between two separated spin systems, as well as the possibility for the nanoscale imaging of magnetization dynamics. I demonstrate Heusler alloy ferromagnetic materials as high spin polarization spin injectors for device applications by studying their magnetoresistive output as a function of composition at room and low temperatures. Spin injection efficiency is another important aspect in the performance of spintronic devices, and optimization of spin injection will be of importance in creating realistic devices. Another promising avenue for spin injection relies on the spin Hall effect. I discuss efforts at using the spin Hall effect in platinum to inject spins into an aluminum channel to be detected in another platinum electrode by the inverse spin Hall effect without the need for a ferromagnet, thus reducing complications resulting from the stray field of typical ferromagnetic injectors. I discuss exploration of spin pumping devices based on metallic and insulating ferromagnet/graphene bilayers using ferromagnetic resonance and electrical detection of the inverse spin Hall effect. Spin pumping represents another opportunity to study interactions of spin transport and magnetization dynamics, in this case leveraged for efficient spin injection. Finally, I perform magnetic resonance measurements of thin film iron germanium skyrmionic candidate materials. Skrymions are a candidate for high density and low power magnetic recording. Measuring the dynamics of these materials will be important for a full characterization of their properties. I demonstrate detection of multiple magnetic phases in this material, and show evidence of large internal fields, which may be of interest in stabilizing skrymions in thin films.

Probing Spin Dynamics and Transport Using Ferromagnetic Resonance Based Techniques

Probing Spin Dynamics and Transport Using Ferromagnetic Resonance Based Techniques PDF Author: Chunhui Du
Publisher:
ISBN:
Category :
Languages : en
Pages : 137

Get Book Here

Book Description
Generation and manipulation of spin is of central importance in modern physics. This intense interest is driven in part by exciting new phenomena in spintronics such as spin Hall effects and spin transfer torque as well as by the growth in new tools enabling microscopic studies. Ferromagnetic resonance (FMR) is a powerful technique to study macro-scale spin ensembles, and an effective method to generate pure spin currents. Combined with scanning capability, it can be used as a spin sensitive microscopy with nano-scale spatial resolution to bring fresh insights in spintronics and achieve local excitation, manipulation, and detection of spin. In the first part of this thesis, I will briefly introduce the field of spintronics. In the second chapter, I demonstrate the use of FMR spectroscopy to study the static and dynamics properties of novel materials. In the third chapter, I present the FMR spin pumping technique in ferromagnetic material/normal metal bilayer to characterize the spin Hall angles for a series of 3d, 4d, and 5d transition metals with widely varying spin-orbit coupling strengths and demonstrate that both atomic number, Z, and d electron count play important roles in spin Hall physics. Those work studies the spin dynamics and transport across the interface defined by material discontinuity in macro-scale sample. To study nano-scale structures, in the forth and fifth chapters, I describe probing and imaging spin dynamics using spin wave modes confined into microscopic volumes in a ferromagnetic film by the spatially inhomogeneous magnetic field of a scanned micromagnetic tip of a ferromagnetic resonance force microscope (FMRFM). It shows the characteristics of the localized mode can be broadly tuned by appropriate selection of the orientation of the tip moment relative to the applied uniform field. Micromagnetic simulations accurately reproduce our experimental results and allow quantitative understanding of the ferromagnetic resonance force microscopy spectra. These results provide a universal method of generating and understanding the tightly confined localized modes in various measurement geometries and material systems with increased freedom in the choice of tip and material, and paves the way to improved spatial resolution for imaging using localized spin wave modes. At last, I demonstrate a design of room temperature FMR force microscope with both imaging and transport capability to study and image spin dynamics and transport across the interface defined by the magnetic textures with nano-scale resolution. The sixth chapter is a conclusion of the entire dissertation.

Spin Current

Spin Current PDF Author: Sadamichi Maekawa
Publisher: Oxford University Press
ISBN: 0198787073
Category : Science
Languages : en
Pages : 541

Get Book Here

Book Description
In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.

Spin Dynamics and Spatially Resolved Spin Transport Phenomena in GaAs Based Structures

Spin Dynamics and Spatially Resolved Spin Transport Phenomena in GaAs Based Structures PDF Author: Roland Völkl
Publisher:
ISBN:
Category :
Languages : en
Pages : 165

Get Book Here

Book Description


Modern Magnetic Resonance

Modern Magnetic Resonance PDF Author: Graham A. Webb
Publisher: Springer Science & Business Media
ISBN: 1402039107
Category : Technology & Engineering
Languages : en
Pages : 1889

Get Book Here

Book Description
A comprehensive collection of the applications of Nuclear Magnetic Resonance (NMR), Magnetic Resonance Imaging (MRI) and Electron-Spin Resonance (ESR). Covers the wide ranging disciplines in which these techniques are used: * Chemistry; * Biological Sciences; * Pharmaceutical Sciences; * Medical uses; * Marine Science; * Materials Science; * Food Science. Illustrates many techniques through the applications described, e.g.: * High resolution solid and liquid state NMR; * Low resolution NMR, especially important in food science; * Solution State NMR, especially important in pharmaceutical sciences; * Magnetic Resonance Imaging, especially important for medical uses; * Electron Spin Resonance, especially important for spin-labelling in food, marine and medical studies.

EPR: Instrumental Methods

EPR: Instrumental Methods PDF Author: Christopher J. Bender
Publisher: Springer Science & Business Media
ISBN: 144198951X
Category : Medical
Languages : en
Pages : 444

Get Book Here

Book Description
Electron magnetic resonance spectroscopy is undergoing something akin to a renaissance that is attributable to advances in microwave circuitry and signal processing software. EPR: Instrumental Methods is a textbook that brings the reader up to date on these advances and their role in providing better experimental techniques for biological magnetic resonance. Chapters in this book guide the reader from basic principles of spectrometer design through the advanced methods that are providing new vistas in disciplines such as oximetry, imaging, and structural biology. Key Features: Spectrometer design, particularly at low frequencies (below X-band), Design of spectrometer components unique to ENDOR and ESEEM, Optimization of EMR spectrometer sensitivity spanning many octaves, Algorithmic approach to spectral parameterization, Application of Fourier Methods to polymer conformation, oximetry, and imaging.

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance PDF Author: G A Webb
Publisher: Royal Society of Chemistry
ISBN: 1847558488
Category : Science
Languages : en
Pages : 419

Get Book Here

Book Description
As a spectroscopic method, Nuclear Magnetic Resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive coverage of the literature on this topic. For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an invaluable source of current methods and applications. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Acids" and "NMR of Carbohydrates, Lipids and Membranes". For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an in valuable source of current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 886

Get Book Here

Book Description


Mobility and Proximity in Biological Membranes

Mobility and Proximity in Biological Membranes PDF Author: Sandor Damjanovich
Publisher: CRC Press
ISBN: 9780849349317
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
Cell surface membranes have long been characterized as two-dimensional fluids whose mobile components are randomized by diffusion in the plane of the membrane bilayer. Recent research has indicated that cell surface membranes are highly organized and ordered and that important functional units of membranes appear as arrays of interacting molecules rather than as single, freely diffusing molecules. Mobility and Proximity in Biological Membranes provides an overview of the results obtained from biophysical methods for probing the organization of cell surface membranes. These results are presented in the context of detailed treatments of the theory and the technical demands of each of the methods. The book describes a versatile and easily applied mode for investigating molecular proximities in plasma membranes in a flow cytometer. Its analysis of lipid fluidity and viscosity of membranes and the rotational mobility of proteins offers intimate insight into the physical chemistry of biological membranes. The electrophysiology of lymphocytes is presented with focus on its importance in different diseases. New techniques are described, and new data, new possibilities, and future trends are presented by world experts. This book's chapters can serve both as guides to the existing literature and as starting points for new experiments and approaches associated with problems in membrane function.

Multifrequency Electron Paramagnetic Resonance

Multifrequency Electron Paramagnetic Resonance PDF Author: Sushil K. Misra
Publisher: John Wiley & Sons
ISBN: 3527633553
Category : Science
Languages : en
Pages : 990

Get Book Here

Book Description
Filling the gap for a systematic, authoritative, and up-to-date review of this cutting-edge technique, this book covers both low and high frequency EPR, emphasizing the importance of adopting the multifrequency approach to study paramagnetic systems in full detail by using the EPR method. In so doing, it discusses not only the underlying theory and applications, but also all recent advances -- with a final section devoted to future perspectives.