Infinite Dimensional Hilbert Lattices

Infinite Dimensional Hilbert Lattices PDF Author: Ronald Paul Morash
Publisher:
ISBN:
Category : Lattice theory
Languages : en
Pages : 214

Get Book Here

Book Description

Infinite Dimensional Hilbert Lattices

Infinite Dimensional Hilbert Lattices PDF Author: Ronald Paul Morash
Publisher:
ISBN:
Category : Lattice theory
Languages : en
Pages : 214

Get Book Here

Book Description


Measures And Hilbert Lattices

Measures And Hilbert Lattices PDF Author: Gudrun Kalmbach
Publisher: World Scientific
ISBN: 9814531901
Category :
Languages : en
Pages : 261

Get Book Here

Book Description
Contents: IntroductionOrthomodular MeasuresGleason's TheoremJordan-Hahn DecompositionOrthofacial Sets of StatesEquational Classes Related to StatesDecomposition of Complete Orthomodular LatticesCharacterization of Dimension LatticesBirkhoff-Von Neumann TheoremCoordinatizationsKakutani-Mackey TheoremKeller's Non-Classical Hilbert Spaces Readership: Mathematician and Physicist who are interested in Hilbert Lattices.

Quantum Logic in Algebraic Approach

Quantum Logic in Algebraic Approach PDF Author: Miklós Rédei
Publisher: Springer Science & Business Media
ISBN: 9401590265
Category : Science
Languages : en
Pages : 244

Get Book Here

Book Description
This work has grown out of the lecture notes that were prepared for a series of seminars on some selected topics in quantum logic. The seminars were delivered during the first semester of the 1993/1994 academic year in the Unit for Foundations of Science of the Department of History and Foundations of Mathematics and Science, Faculty of Physics, Utrecht University, The Netherlands, while I was staying in that Unit on a European Community Research Grant, and in the Center for Philosophy of Science, University of Pittsburgh, U. S. A. , where I was staying during the 1994/1995 academic year as a Visiting Fellow on a Fulbright Research Grant, and where I also was supported by the Istvan Szechenyi Scholarship Foundation. The financial support provided by these foundations, by the Center for Philosophy of Science and by the European Community is greatly acknowledged, and I wish to thank D. Dieks, the professor of the Foundations Group in Utrecht and G. Massey, the director of the Center for Philosophy of Science in Pittsburgh for making my stay at the respective institutions possible. I also wish to thank both the members of the Foundations Group in Utrecht, especially D. Dieks, C. Lutz, F. Muller, J. Uffink and P. Vermaas and the participants in the seminars at the Center for Philosophy of Science in Pittsburgh, especially N. Belnap, J. Earman, A. Janis, J. Norton, and J.

Quantum Spin Systems on Infinite Lattices

Quantum Spin Systems on Infinite Lattices PDF Author: Pieter Naaijkens
Publisher: Springer
ISBN: 331951458X
Category : Science
Languages : en
Pages : 184

Get Book Here

Book Description
This course-based primer offers readers a concise introduction to the description of quantum mechanical systems with infinitely many degrees of freedom – and quantum spin systems in particular – using the operator algebraic approach. Here, the observables are modeled using elements of some operator algebra, usually a C*-algebra. This text introduces readers to the framework and the necessary mathematical tools without assuming much mathematical background, making it more accessible than advanced monographs. The book also highlights the usefulness of the so-called thermodynamic limit of quantum spin systems, which is the limit of infinite system size. For example, this makes it possible to clearly distinguish between local and global properties, without having to keep track of the system size. Together with Lieb-Robinson bounds, which play a similar role in quantum spin systems to that of the speed of light in relativistic theories, this approach allows ideas from relativistic field theories to be implemented in a quantum spin system. Several related cases are discussed, demonstrating the merits of the operator algebraic approach. Featuring representative worked-out examples and many exercises, this text is primarily targeted at graduate students and advanced undergraduates in theoretical physics or mathematics with a keen interest in mathematical physics. The material provides the necessary background and pointers to start exploring the recent literature. As such, it will also be useful for active researchers seeking a quick and comparatively self-contained introduction to the operator algebraic approach to quantum spin systems.

On the Decidability of the Identities Valid in the Lattice of Closed Subspaces

On the Decidability of the Identities Valid in the Lattice of Closed Subspaces PDF Author: Monty Montague Denneau
Publisher:
ISBN:
Category : Hilbert space
Languages : en
Pages : 116

Get Book Here

Book Description


Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithmetic Curves

Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithmetic Curves PDF Author: Jean-Benoît Bost
Publisher: Springer Nature
ISBN: 3030443299
Category : Mathematics
Languages : en
Pages : 365

Get Book Here

Book Description
This book presents the most up-to-date and sophisticated account of the theory of Euclidean lattices and sequences of Euclidean lattices, in the framework of Arakelov geometry, where Euclidean lattices are considered as vector bundles over arithmetic curves. It contains a complete description of the theta invariants which give rise to a closer parallel with the geometric case. The author then unfolds his theory of infinite Hermitian vector bundles over arithmetic curves and their theta invariants, which provides a conceptual framework to deal with the sequences of lattices occurring in many diophantine constructions. The book contains many interesting original insights and ties to other theories. It is written with extreme care, with a clear and pleasant style, and never sacrifices accessibility to sophistication.

Randomness And Undecidability In Physics

Randomness And Undecidability In Physics PDF Author: Karl Svozil
Publisher: World Scientific
ISBN: 9814522929
Category : Science
Languages : en
Pages : 310

Get Book Here

Book Description
Recent findings in the computer sciences, discrete mathematics, formal logics and metamathematics have opened up a royal road for the investigation of undecidability and randomness in physics. A translation of these formal concepts yields a fresh look into diverse features of physical modelling such as quantum complementarity and the measurement problem, but also stipulates questions related to the necessity of the assumption of continua.Conversely, any computer may be perceived as a physical system: not only in the immediate sense of the physical properties of its hardware. Computers are a medium to virtual realities. The foreseeable importance of such virtual realities stimulates the investigation of an “inner description”, a “virtual physics” of these universes of computation. Indeed, one may consider our own universe as just one particular realisation of an enormous number of virtual realities, most of them awaiting discovery.One motive of this book is the recognition that what is often referred to as “randomness” in physics might actually be a signature of undecidability for systems whose evolution is computable on a step-by-step basis. To give a flavour of the type of questions envisaged: Consider an arbitrary algorithmic system which is computable on a step-by-step basis. Then it is in general impossible to specify a second algorithmic procedure, including itself, which, by experimental input-output analysis, is capable of finding the deterministic law of the first system. But even if such a law is specified beforehand, it is in general impossible to predict the system behaviour in the “distant future”. In other words: no “speedup” or “computational shortcut” is available. In this approach, classical paradoxes can be formally translated into no-go theorems concerning intrinsic physical perception.It is suggested that complementarity can be modelled by experiments on finite automata, where measurements of one observable of the automaton destroys the possibility to measure another observable of the same automaton and it vice versa.Besides undecidability, a great part of the book is dedicated to a formal definition of randomness and entropy measures based on algorithmic information theory.

Measures on Infinite Dimensional Spaces

Measures on Infinite Dimensional Spaces PDF Author: Yasuo Yamasaki
Publisher: World Scientific
ISBN: 9789971978525
Category : Science
Languages : en
Pages : 276

Get Book Here

Book Description
This book is based on lectures given at Yale and Kyoto Universities and provides a self-contained detailed exposition of the following subjects: 1) The construction of infinite dimensional measures, 2) Invariance and quasi-invariance of measures under translations. This book furnishes an important tool for the analysis of physical systems with infinite degrees of freedom (such as field theory, statistical physics and field dynamics) by providing material on the foundations of these problems.

The Many Valued and Nonmonotonic Turn in Logic

The Many Valued and Nonmonotonic Turn in Logic PDF Author: Dov M. Gabbay
Publisher: Elsevier
ISBN: 008054939X
Category : Mathematics
Languages : en
Pages : 691

Get Book Here

Book Description
The present volume of the Handbook of the History of Logic brings together two of the most important developments in 20th century non-classical logic. These are many-valuedness and non-monotonicity. On the one approach, in deference to vagueness, temporal or quantum indeterminacy or reference-failure, sentences that are classically non-bivalent are allowed as inputs and outputs to consequence relations. Many-valued, dialetheic, fuzzy and quantum logics are, among other things, principled attempts to regulate the flow-through of sentences that are neither true nor false. On the second, or non-monotonic, approach, constraints are placed on inputs (and sometimes on outputs) of a classical consequence relation, with a view to producing a notion of consequence that serves in a more realistic way the requirements of real-life inference. Many-valued logics produce an interesting problem. Non-bivalent inputs produce classically valid consequence statements, for any choice of outputs. A major task of many-valued logics of all stripes is to fashion an appropriately non-classical relation of consequence.The chief preoccupation of non-monotonic (and default) logicians is how to constrain inputs and outputs of the consequence relation. In what is called “left non-monotonicity , it is forbidden to add new sentences to the inputs of true consequence-statements. The restriction takes notice of the fact that new information will sometimes override an antecedently (and reasonably) derived consequence. In what is called “right non-monotonicity , limitations are imposed on outputs of the consequence relation. Most notably, perhaps, is the requirement that the rule of or-introduction not be given free sway on outputs. Also prominent is the effort of paraconsistent logicians, both preservationist and dialetheic, to limit the outputs of inconsistent inputs, which in classical contexts are wholly unconstrained.In some instances, our two themes coincide. Dialetheic logics are a case in point. Dialetheic logics allow certain selected sentences to have, as a third truth value, the classical values of truth and falsity together. So such logics also admit classically inconsistent inputs. A central task is to construct a right non-monotonic consequence relation that allows for these many-valued, and inconsistent, inputs.The Many Valued and Non-Monotonic Turn in Logic is an indispensable research tool for anyone interested in the development of logic, including researchers, graduate and senior undergraduate students in logic, history of logic, mathematics, history of mathematics, computer science, AI, linguistics, cognitive science, argumentation theory, and the history of ideas. Detailed and comprehensive chapters covering the entire range of modal logic. Contains the latest scholarly discoveries and interprative insights that answers many questions in the field of logic.

John von Neumann and the Foundations of Quantum Physics

John von Neumann and the Foundations of Quantum Physics PDF Author: Miklós Rédei
Publisher: Springer Science & Business Media
ISBN: 9401720126
Category : Science
Languages : en
Pages : 360

Get Book Here

Book Description
John von Neumann (1903-1957) was undoubtedly one of the scientific geniuses of the 20th century. The main fields to which he contributed include various disciplines of pure and applied mathematics, mathematical and theoretical physics, logic, theoretical computer science, and computer architecture. Von Neumann was also actively involved in politics and science management and he had a major impact on US government decisions during, and especially after, the Second World War. There exist several popular books on his personality and various collections focusing on his achievements in mathematics, computer science, and economy. Strangely enough, to date no detailed appraisal of his seminal contributions to the mathematical foundations of quantum physics has appeared. Von Neumann's theory of measurement and his critique of hidden variables became the touchstone of most debates in the foundations of quantum mechanics. Today, his name also figures most prominently in the mathematically rigorous branches of contemporary quantum mechanics of large systems and quantum field theory. And finally - as one of his last lectures, published in this volume for the first time, shows - he considered the relation of quantum logic and quantum mechanical probability as his most important problem for the second half of the twentieth century. The present volume embraces both historical and systematic analyses of his methodology of mathematical physics, and of the various aspects of his work in the foundations of quantum physics, such as theory of measurement, quantum logic, and quantum mechanical entropy. The volume is rounded off by previously unpublished letters and lectures documenting von Neumann's thinking about quantum theory after his 1932 Mathematical Foundations of Quantum Mechanics. The general part of the Yearbook contains papers emerging from the Institute's annual lecture series and reviews of important publications of philosophy of science and its history.