Indoor Scene Recognition by 3-D Object Search

Indoor Scene Recognition by 3-D Object Search PDF Author: Pascal Meißner
Publisher: Springer Nature
ISBN: 3030318524
Category : Technology & Engineering
Languages : en
Pages : 279

Get Book Here

Book Description
This book focuses on enabling mobile robots to recognize scenes in indoor environments, in order to allow them to determine which actions are appropriate at which points in time. In concrete terms, future robots will have to solve the classification problem represented by scene recognition sufficiently well for them to act independently in human-centered environments. To achieve accurate yet versatile indoor scene recognition, the book presents a hierarchical data structure for scenes – the Implicit Shape Model trees. Further, it also provides training and recognition algorithms for these trees. In general, entire indoor scenes cannot be perceived from a single point of view. To address this problem the authors introduce Active Scene Recognition (ASR), a concept that embeds canonical scene recognition in a decision-making system that selects camera views for a mobile robot to drive to so that it can find objects not yet localized. The authors formalize the automatic selection of camera views as a Next-Best-View (NBV) problem to which they contribute an algorithmic solution, which focuses on realistic problem modeling while maintaining its computational efficiency. Lastly, the book introduces a method for predicting the poses of objects to be searched, establishing the otherwise missing link between scene recognition and NBV estimation.

Indoor Scene Recognition by 3-D Object Search

Indoor Scene Recognition by 3-D Object Search PDF Author: Pascal Meißner
Publisher: Springer Nature
ISBN: 3030318524
Category : Technology & Engineering
Languages : en
Pages : 279

Get Book Here

Book Description
This book focuses on enabling mobile robots to recognize scenes in indoor environments, in order to allow them to determine which actions are appropriate at which points in time. In concrete terms, future robots will have to solve the classification problem represented by scene recognition sufficiently well for them to act independently in human-centered environments. To achieve accurate yet versatile indoor scene recognition, the book presents a hierarchical data structure for scenes – the Implicit Shape Model trees. Further, it also provides training and recognition algorithms for these trees. In general, entire indoor scenes cannot be perceived from a single point of view. To address this problem the authors introduce Active Scene Recognition (ASR), a concept that embeds canonical scene recognition in a decision-making system that selects camera views for a mobile robot to drive to so that it can find objects not yet localized. The authors formalize the automatic selection of camera views as a Next-Best-View (NBV) problem to which they contribute an algorithmic solution, which focuses on realistic problem modeling while maintaining its computational efficiency. Lastly, the book introduces a method for predicting the poses of objects to be searched, establishing the otherwise missing link between scene recognition and NBV estimation.

Active Vision for Scene Understanding

Active Vision for Scene Understanding PDF Author: Grotz, Markus
Publisher: KIT Scientific Publishing
ISBN: 3731511010
Category : Computers
Languages : en
Pages : 202

Get Book Here

Book Description
Visual perception is one of the most important sources of information for both humans and robots. A particular challenge is the acquisition and interpretation of complex unstructured scenes. This work contributes to active vision for humanoid robots. A semantic model of the scene is created, which is extended by successively changing the robot's view in order to explore interaction possibilities of the scene.

Computer Vision -- ECCV 2014

Computer Vision -- ECCV 2014 PDF Author: David Fleet
Publisher: Springer
ISBN: 331910599X
Category : Computers
Languages : en
Pages : 855

Get Book Here

Book Description
The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The papers are organized in topical sections on tracking and activity recognition; recognition; learning and inference; structure from motion and feature matching; computational photography and low-level vision; vision; segmentation and saliency; context and 3D scenes; motion and 3D scene analysis; and poster sessions.

Representations and Techniques for 3D Object Recognition and Scene Interpretation

Representations and Techniques for 3D Object Recognition and Scene Interpretation PDF Author: Derek Hoiem
Publisher: Morgan & Claypool Publishers
ISBN: 1608457281
Category : Computers
Languages : en
Pages : 172

Get Book Here

Book Description
One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions

Computer Vision – ACCV 2020

Computer Vision – ACCV 2020 PDF Author: Hiroshi Ishikawa
Publisher: Springer Nature
ISBN: 3030695352
Category : Computers
Languages : en
Pages : 770

Get Book Here

Book Description
The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.* The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics: Part I: 3D computer vision; segmentation and grouping Part II: low-level vision, image processing; motion and tracking Part III: recognition and detection; optimization, statistical methods, and learning; robot vision Part IV: deep learning for computer vision, generative models for computer vision Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis Part VI: applications of computer vision; vision for X; datasets and performance analysis *The conference was held virtually.

Proceedings of 3rd 2023 International Conference on Autonomous Unmanned Systems (3rd ICAUS 2023)

Proceedings of 3rd 2023 International Conference on Autonomous Unmanned Systems (3rd ICAUS 2023) PDF Author: Yi Qu
Publisher: Springer Nature
ISBN: 9819710995
Category :
Languages : en
Pages : 478

Get Book Here

Book Description


Deep Learning For 3d Vision: Algorithms And Applications

Deep Learning For 3d Vision: Algorithms And Applications PDF Author: Xiaoli Li
Publisher: World Scientific
ISBN: 9811286507
Category : Computers
Languages : en
Pages : 493

Get Book Here

Book Description
3D deep learning is a rapidly evolving field that has the potential to transform various industries. This book provides a comprehensive overview of the current state-of-the-art in 3D deep learning, covering a wide range of research topics and applications. It collates the most recent research advances in 3D deep learning, including algorithms and applications, with a focus on efficient methods to tackle the key technical challenges in current 3D deep learning research and adoption, therefore making 3D deep learning more practical and feasible for real-world applications.This book is organized into five sections, each of which addresses different aspects of 3D deep learning. Section I: Sample Efficient 3D Deep Learning, focuses on developing efficient algorithms to build accurate 3D models with limited annotated samples. Section II: Representation Efficient 3D Deep Learning, deals with the challenge of developing efficient representations for dynamic 3D scenes and multiple 3D modalities. Section III: Robust 3D Deep Learning, presents methods for improving the robustness and reliability of deep learning models in real-world applications. Section IV: Resource Efficient 3D Deep Learning, explores ways to reduce the computation cost of 3D models and improve their efficiency in resource-limited environments. Section V: Emerging 3D Deep Learning Applications, showcases how 3D deep learning is transforming industries and enabling new applications for healthcare and manufacturing.This collection is a valuable resource for researchers and practitioners interested in exploring the potential of 3D deep learning.

Informatics in Control, Automation and Robotics

Informatics in Control, Automation and Robotics PDF Author: Honghua Tan
Publisher: Springer Science & Business Media
ISBN: 3642258999
Category : Technology & Engineering
Languages : en
Pages : 791

Get Book Here

Book Description
Session 1 includes 109 papers selected from 2011 3rd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2011), held on December 24-25, 2011, Shenzhen, China. This session will act as an international forum for researchers and practitioners interested in the advances in and applications of Intelligent Control Systems. It is an opportunity to present and observe the latest research, results, and ideas in these areas. Intelligent control is a rapidly developing, complex, and challenging field of increasing practical importance and still greater potential. Its applications have a solid core in robotics and mechatronics but branch out into areas as diverse as process control, automotive industry, medical equipment, renewable energy and air conditioning. So, this session will aim to strengthen relationships between industry, research laboratories and universities. All papers published in session 1 will be peer evaluated by at least two conference reviewers. Acceptance will be based primarily on originality and contribution.

Computer Vision -- ECCV 2010

Computer Vision -- ECCV 2010 PDF Author: Kostas Daniilidis
Publisher: Springer Science & Business Media
ISBN: 3642155669
Category : Computers
Languages : en
Pages : 624

Get Book Here

Book Description
The six-volume set comprising LNCS volumes 6311 until 6313 constitutes the refereed proceedings of the 11th European Conference on Computer Vision, ECCV 2010, held in Heraklion, Crete, Greece, in September 2010. The 325 revised papers presented were carefully reviewed and selected from 1174 submissions. The papers are organized in topical sections on object and scene recognition; segmentation and grouping; face, gesture, biometrics; motion and tracking; statistical models and visual learning; matching, registration, alignment; computational imaging; multi-view geometry; image features; video and event characterization; shape representation and recognition; stereo; reflectance, illumination, color; medical image analysis.

Leveraging Applications of Formal Methods, Verification, and Validation

Leveraging Applications of Formal Methods, Verification, and Validation PDF Author: Reiner Hähnle
Publisher: Springer
ISBN: 3642347819
Category : Computers
Languages : en
Pages : 271

Get Book Here

Book Description
This volume contains a selection of revised papers that were presented at the Software Aspects of Robotic Systems, SARS 2011 Workshop and the Machine Learning for System Construction, MLSC 2011 Workshop, held during October 17-18 in Vienna, Austria, under the auspices of the International Symposium Series on Leveraging Applications of Formal Methods, Verification, and Validation, ISoLA. The topics covered by the papers of the SARS and the MLSC workshop demonstrate the breadth and the richness of the respective fields of the two workshops stretching from robot programming to languages and compilation techniques, to real-time and fault tolerance, to dependability, software architectures, computer vision, cognitive robotics, multi-robot-coordination, and simulation to bio-inspired algorithms, and from machine learning for anomaly detection, to model construction in software product lines to classification of web service interfaces. In addition the SARS workshop hosted a special session on the recently launched KOROS project on collaborating robot systems that is borne by a consortium of researchers of the faculties of architecture and planning, computer science, electrical engineering and information technology, and mechanical and industrial engineering at the Vienna University of Technology. The four papers devoted to this session highlight important research directions pursued in this interdisciplinary research project.