Hierarchical Carbon Fiber Composites with Radially Aligned Carbon Nanotubes

Hierarchical Carbon Fiber Composites with Radially Aligned Carbon Nanotubes PDF Author: Richard Li (S.M.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 94

Get Book Here

Book Description
Hierarchical carbon-nanotube (CNT)-based composites have significant potential to expand the performance and functionality of aerospace composite structures. Notably, circumferentially aligned CNT arrays have previously been grown on woven alumina filaments to form a "fuzzy fiber" reinforced plastic (FFRP) architecture with demonstrated improvements in inter- and intra-ply mechanical properties as well as multifunctional enhancement via tailorable electrical and thermal conductivities. However, thus far, the development of fuzzy carbon fiber reinforced plastics (fuzzy CFRP) with all-around enhanced mechanical properties has been elusive. In particular, prior work attaining growth of CNTs on carbon fibers (CF) have resulted in drastic reductions in fiber tensile strength (e.g., 55% loss), thereby compromising in-plane tensile properties of the resultant fuzzy CFRP. In this thesis, a novel method for high-yield growth of carbon nanotubes on carbon fiber is refined and implemented in the fabrication of unidirectional fuzzy CFRP plies with preserved tensile properties: Non-covalent functionalization of the CF surface coupled with a low temperature thermal chemical vapor deposition process enable high density catalyst adhesion and CNT growth below critical temperatures that would result in fiber strength loss. Successful scale-up to unidirectional fuzzy CFRP specimens with high (67%) and low (32%) CF volume fractions is presented. Testing results indicate that longitudinal elastic properties are retained for all fuzzy CFRP samples consistent with micromechanical analyses. Unexpectedly, the high fiber volume fraction fuzzy CFRP specimens show a 12% decrease in mean tensile strength that was hypothesized to be due to fiber damage introduced through transverse compression during processing of the fuzzy carbon fiber tows. As such, lower fiber volume fraction fuzzy CFRP specimens were subsequently tested and observed to retain strength. These advances pave the way for scale-up to fuzzy CFRP laminates with integrated multifunctionality and improved interlaminar performance without compromising in-plane mechanical properties critical to aerospace-grade composite materials.

Hierarchical Carbon Fiber Composites with Radially Aligned Carbon Nanotubes

Hierarchical Carbon Fiber Composites with Radially Aligned Carbon Nanotubes PDF Author: Richard Li (S.M.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 94

Get Book Here

Book Description
Hierarchical carbon-nanotube (CNT)-based composites have significant potential to expand the performance and functionality of aerospace composite structures. Notably, circumferentially aligned CNT arrays have previously been grown on woven alumina filaments to form a "fuzzy fiber" reinforced plastic (FFRP) architecture with demonstrated improvements in inter- and intra-ply mechanical properties as well as multifunctional enhancement via tailorable electrical and thermal conductivities. However, thus far, the development of fuzzy carbon fiber reinforced plastics (fuzzy CFRP) with all-around enhanced mechanical properties has been elusive. In particular, prior work attaining growth of CNTs on carbon fibers (CF) have resulted in drastic reductions in fiber tensile strength (e.g., 55% loss), thereby compromising in-plane tensile properties of the resultant fuzzy CFRP. In this thesis, a novel method for high-yield growth of carbon nanotubes on carbon fiber is refined and implemented in the fabrication of unidirectional fuzzy CFRP plies with preserved tensile properties: Non-covalent functionalization of the CF surface coupled with a low temperature thermal chemical vapor deposition process enable high density catalyst adhesion and CNT growth below critical temperatures that would result in fiber strength loss. Successful scale-up to unidirectional fuzzy CFRP specimens with high (67%) and low (32%) CF volume fractions is presented. Testing results indicate that longitudinal elastic properties are retained for all fuzzy CFRP samples consistent with micromechanical analyses. Unexpectedly, the high fiber volume fraction fuzzy CFRP specimens show a 12% decrease in mean tensile strength that was hypothesized to be due to fiber damage introduced through transverse compression during processing of the fuzzy carbon fiber tows. As such, lower fiber volume fraction fuzzy CFRP specimens were subsequently tested and observed to retain strength. These advances pave the way for scale-up to fuzzy CFRP laminates with integrated multifunctionality and improved interlaminar performance without compromising in-plane mechanical properties critical to aerospace-grade composite materials.

Carbon Nanotube Growth on Challenging Substrates

Carbon Nanotube Growth on Challenging Substrates PDF Author: Stephen Alan Steiner (III.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 315

Get Book Here

Book Description
Nanoengineered hierarchal fiber architectures are promising approaches towards improving the inter- and intralaminar mechanical properties (e.g., toughness and strength) and non-mechanical properties of advanced fiber-reinforced composites such as graphite/epoxy. One fiber architecture of particular interest is carbon fiber coated with radially-aligned arrays of carbon nanotubes (CNTs), which can enable through-thickness and interply matrix reinforcement of carbon-fiber-reinforced composites while simultaneously providing additional multifunctional benefits such as electrical and thermal conductivity enhancement. Growth of CNTs on carbon fibers can be achieved by chemical vapor deposition (CVD) techniques, however previous processes for doing so have resulted in a significant reduction in the tensile strength and stiffness of the carbon fibers. This thesis aims to develop an understanding of catalyst-substrate and CVD environment-substrate interactions relevant to maintaining fiber mechanical properties in the growth of CNTs on carbon fibers by CVD and to use this understanding to develop practical approaches for growing CNTs on carbon fibers that simultaneously preserve fiber properties. Novel oxide-based catalysts are demonstrated for the first time to be effective for both CNT growth and graphitization of amorphous carbon and are characterized using in situ metrology. These catalysts show promise for use on substrates that exhibit sensitivity to conventional metal catalysts (such as carbon fibers). New CVD processing techniques based on materials properties unique to this class of catalysts are presented and explored. Coatings for enabling growth of aligned CNTs on carbon fibers, coatings for improving adhesion of materials to carbon fibers, and coatings for facilitating low-temperature growth of CNTs on carbon fibers are developed. The mechanochemical responses of carbon fibers to high-temperature processing, exposure to CVD gases relevant for CNT growth, and in situ tensioning during CVD growth at high temperatures are investigated. Methods for growing CNTs on carbon fibers that enable aligned CNT morphologies and that preserve fiber properties are presented. A new system for optimizing CNT growth on carbon fibers with special considerations for oxide-based catalysts is described. Finally, recommendations for manufacturing hierarchal carbon fibers for composites in an industrially practical way are made.

Carbon Composites

Carbon Composites PDF Author: Deborah D.L. Chung
Publisher: Butterworth-Heinemann
ISBN: 0128028807
Category : Technology & Engineering
Languages : en
Pages : 708

Get Book Here

Book Description
Carbon Composites: Composites with Carbon Fibers, Nanofibers, and Nanotubes, Second Edition, provides the reader with information on a wide range of carbon fiber composites, including polymer-matrix, metal-matrix, carbon-matrix, ceramic-matrix and cement-matrix composites. In contrast to other books on composites, this work emphasizes materials rather than mechanics. This emphasis reflects the key role of materials science and engineering in the development of composite materials. The applications focus of the book covers both the developing range of structural applications for carbon fiber composites, including military and civil aircraft, automobiles and construction, and non-structural applications, including electromagnetic shielding, sensing/monitoring, vibration damping, energy storage, energy generation, and deicing. In addition to these new application areas, new material in this updated edition includes coverage of cement-matrix composites, carbon nanofibers, carbon matrix precursors, fiber surface treatment, nanocarbons, and hierarchical composites. An ideal source of information for senior undergraduate students, graduate students, and professionals working with composite materials and carbon fibers, this book can be used both as a reference book and as a textbook. Introduces the entire spectrum of carbon fiber composites, including polymer-matrix, metal-matrix, carbon-matrix, ceramic-matrix and cement-matrix composites Systematically sets out the processing, properties, and applications of each type of material Emphasizes processing as the foundation of understanding, manufacturing, and designing with composite materials

Manufacturing and Fracture of Hierarchical Composite Materials Enhanced with Aligned Carbon Nanotubes

Manufacturing and Fracture of Hierarchical Composite Materials Enhanced with Aligned Carbon Nanotubes PDF Author: Sunny S. Wicks
Publisher:
ISBN:
Category :
Languages : en
Pages : 165

Get Book Here

Book Description
Hierarchical advanced composite structures comprised of both nano- and micro-scale fibers are currently being studied as next-generation materials for multifunctional aerospace applications. Carbon nanotubes (CNTs) are an attractive reinforcing fiber for aerospace composites due to their scale and superior specific stiffness and strength, as well as their potential to enhance multifunctional properties. Nano-scale fibers can address current challenges in composites such as relatively weak through-thickness properties that occur due to matrix-rich regions, including those found at interlaminar ply interfaces, that are prone to delamination and lead to overall reductions in mechanical properties. Existing technologies such as stitching, z-pinning, and braiding provide through-thickness reinforcement; however, these improvements come with simultaneous reductions in in-plane properties. CNTs provide an alternative fiber reinforcement, though currently the literature reveals that laminate mechanical property enhancements are lower than expected. Investigations into how CNTs affect laminate properties have stalled due to difficulties with producing quality laminates and controlling CNT orientation and dispersion. In this work, manufacturing routes of a nano-engineered composite are developed to provide consistent control over laminate quality while placing aligned CNTs (A-CNTs) in the polymer matrix in the interlaminar and intralaminar regions. Manufacturing techniques are developed for growing aligned CNTs on a three-dimensional woven microfiber substrate and infiltrating the fuzzy fiber plies with polymer to realize the Fuzzy Fiber Reinforced Plastics (FFRP) architecture. These FFRP laminates show

Carbon Nanotube-Reinforced Polymers

Carbon Nanotube-Reinforced Polymers PDF Author: Roham Rafiee
Publisher: Elsevier
ISBN: 0323482228
Category : Science
Languages : en
Pages : 588

Get Book Here

Book Description
Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale addresses the advances in nanotechnology that have led to the development of a new class of composite materials known as CNT-reinforced polymers. The low density and high aspect ratio, together with their exceptional mechanical, electrical and thermal properties, render carbon nanotubes as a good reinforcing agent for composites. In addition, these simulation and modeling techniques play a significant role in characterizing their properties and understanding their mechanical behavior, and are thus discussed and demonstrated in this comprehensive book that presents the state-of-the-art research in the field of modeling, characterization and processing. The book separates the theoretical studies on the mechanical properties of CNTs and their composites into atomistic modeling and continuum mechanics-based approaches, including both analytical and numerical ones, along with multi-scale modeling techniques. Different efforts have been done in this field to address the mechanical behavior of isolated CNTs and their composites by numerous researchers, signaling that this area of study is ongoing. Explains modeling approaches to carbon nanotubes, together with their application, strengths and limitations Outlines the properties of different carbon nanotube-based composites, exploring how they are used in the mechanical and structural components Analyzes the behavior of carbon nanotube-based composites in different conditions

The Structural Integrity of Carbon Fiber Composites

The Structural Integrity of Carbon Fiber Composites PDF Author: Peter W. R Beaumont
Publisher: Springer
ISBN: 3319461206
Category : Technology & Engineering
Languages : en
Pages : 954

Get Book Here

Book Description
This book brings together a diverse compilation of inter-disciplinary chapters on fundamental aspects of carbon fiber composite materials and multi-functional composite structures: including synthesis, characterization, and evaluation from the nano-structure to structure meters in length. The content and focus of contributions under the umbrella of structural integrity of composite materials embraces topics at the forefront of composite materials science and technology, the disciplines of mechanics, and development of a new predictive design methodology of the safe operation of engineering structures from cradle to grave. Multi-authored papers on multi-scale modelling of problems in material design and predicting the safe performance of engineering structure illustrate the inter-disciplinary nature of the subject. The book examines topics such as Stochastic micro-mechanics theory and application for advanced composite systems Construction of the evaluation process for structural integrity of material and structure Nano- and meso-mechanics modelling of structure evolution during the accumulation of damage Statistical meso-mechanics of composite materials Hierarchical analysis including "age-aware," high-fidelity simulation and virtual mechanical testing of composite structures right up to the point of failure. The volume is ideal for scientists, engineers, and students interested in carbon fiber composite materials, and other composite material systems.

Carbon Nanotube Reinforced Composites

Carbon Nanotube Reinforced Composites PDF Author: Marcio Loos
Publisher: Elsevier
ISBN: 145573196X
Category : Technology & Engineering
Languages : en
Pages : 305

Get Book Here

Book Description
Carbon Nanotube Reinforced Composites introduces a wide audience of engineers, scientists and product designers to this important and rapidly expanding class of high performance composites. Dr Loos provides readers with the scientific fundamentals of carbon nanotubes (CNTs), CNT composites and nanotechnology in a way which will enable them to understand the performance, capability and potential of the materials under discussion. He also investigates how CNT reinforcement can be used to enhance the mechanical, electrical and thermal properties of polymer composites. Production methods, processing technologies and applications are fully examined, with reference to relevant patents. Finally, health and safety issues related to the use of CNTs are investigated. Dr. Loos compares the theoretical expectations of using CNTs to the results obtained in labs, and explains the reasons for the discrepancy between theoretical and experimental results. This approach makes the book an essential reference and practical guide for engineers and product developers working with reinforced polymers – as well as researchers and students in polymer science, materials and nanotechnology. A wealth of applications information is included, taken from the wide range of industry sectors utilizing CNT reinforced composites, such as energy, coatings, defense, electronics, medical devices, and high performance sports equipment. Introduces a wide range of readers involved in plastics engineering, product design and manufacturing to the relevant topics in nano-science, nanotechnology, nanotubes and composites. Assesses effects of CNTs as reinforcing agents, both in a materials context and an applications setting. Focuses on applications aspects – performance, cost, health and safety, etc – for a wide range of industry sectors, e.g. energy, coatings, defense, electronics, medical devices, high performance sports equipment, etc.

Recent Developments in the Field of Carbon Fibers

Recent Developments in the Field of Carbon Fibers PDF Author: Rita Khanna
Publisher: BoD – Books on Demand
ISBN: 1789235189
Category : Technology & Engineering
Languages : en
Pages : 148

Get Book Here

Book Description
Carbon fibres are lightweight, chemically stable materials with high mechanical strength, and have state-of-the-art applications in aerospace, marine, construction and automotive sectors. The demand for carbon fibre?based components is expected to grow dramatically with expanding opportunities for lightweight metals and composites. Although this field has achieved a high level of maturity, nanoscale developments in carbon fibres have seen dramatic improvements in the functions of conventional biomaterials and composites. This book reveals several new developments in the field to enhance characteristics of carbon fibres and their composites, novel applications for tissue engineering, biological scaffoldings and implants, recycling and reuse of end-of-life CFRP and manufacturing waste and other issues of concern in the field of carbon fibres.

Nanocomposites

Nanocomposites PDF Author: Tsu-Wei Chou
Publisher: DEStech Publications, Inc
ISBN: 1605950734
Category : Technology & Engineering
Languages : en
Pages : 241

Get Book Here

Book Description
A bound edition that contains research papers on using nanomaterials to improve the performance and properties of composites. It covers all phases of nanocomposite synthesis - from design and multiscale modeling to processing and testing. It also offers data on dispersion, alignment and interfacial bonding.

Carbon Nanotube-Polymer Composites

Carbon Nanotube-Polymer Composites PDF Author: Brian P. Grady
Publisher: John Wiley & Sons
ISBN: 1118084373
Category : Technology & Engineering
Languages : en
Pages : 505

Get Book Here

Book Description
The accessible compendium of polymers in carbon nanotubes (CNTs) Carbon nanotubes (CNTs)—extremely thin tubes only a few nanometers in diameter but able to attain lengths thousands of times greater—are prime candidates for use in the development of polymer composite materials. Bringing together thousands of disparate research works, Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications covers CNT-polymers from synthesis to potential applications, presenting the basic science and engineering of this dynamic and complex area in an accessible, readable way. Designed to be of use to polymer scientists, engineers, chemists, physicists, and materials scientists, the book covers carbon nanotube fundamentals to help polymer experts understand CNTs, and polymer physics to help those in the CNT field, making it an invaluable resource for anyone working with CNT-polymer composites. Detailed chapters describe the mechanical, rheological, electrical, and thermal properties of carbon nanotube-polymer composites. Including a glossary that defines key terms, Carbon Nanotube-Polymer Composites is essential reading for anyone looking to gain a fundamental understanding of CNTs and polymers, as well as potential and current applications, including electronics (shielding and transparent electrodes), flame retardants, and electromechanics (sensors and actuators), and their challenges.