Author: Tzung K. Hsiai
Publisher: World Scientific
ISBN: 9814280410
Category : Medical
Languages : en
Pages : 380
Book Description
The book represents a paradigm shift from the traditional static model of investigation of oxidative biology to the dynamic model of vascular oxidative stress. The investigation of vascular biology and cardiovascular medicine is made possible by the use of tissue engineering, nanotechnology and stem cell research. This is the first textbook to target a wide readership from academia to industry and government agencies in the field of cardiovascular diseases.
Hemodynamics and Mechanobiology of Endothelium
Author: Tzung K. Hsiai
Publisher: World Scientific
ISBN: 9814280410
Category : Medical
Languages : en
Pages : 380
Book Description
The book represents a paradigm shift from the traditional static model of investigation of oxidative biology to the dynamic model of vascular oxidative stress. The investigation of vascular biology and cardiovascular medicine is made possible by the use of tissue engineering, nanotechnology and stem cell research. This is the first textbook to target a wide readership from academia to industry and government agencies in the field of cardiovascular diseases.
Publisher: World Scientific
ISBN: 9814280410
Category : Medical
Languages : en
Pages : 380
Book Description
The book represents a paradigm shift from the traditional static model of investigation of oxidative biology to the dynamic model of vascular oxidative stress. The investigation of vascular biology and cardiovascular medicine is made possible by the use of tissue engineering, nanotechnology and stem cell research. This is the first textbook to target a wide readership from academia to industry and government agencies in the field of cardiovascular diseases.
Hemodynamic Forces and Endothelial Mechanobiology in Vascular Diseases
Author: Chih-Yu Yang
Publisher: Frontiers Media SA
ISBN: 2889768511
Category : Science
Languages : en
Pages : 153
Book Description
Publisher: Frontiers Media SA
ISBN: 2889768511
Category : Science
Languages : en
Pages : 153
Book Description
Mechanobiology of the Endothelium
Author: Helim Aranda-Espinoza
Publisher: CRC Press
ISBN: 1482207257
Category : Medical
Languages : en
Pages : 278
Book Description
The endothelium is an excellent example of where biology meets physics and engineering. It must convert mechanical forces into chemical signals to maintain homeostasis. It also controls the immune response, drug delivery through the vasculature, and cancer metastasis. Basic understanding of these processes is starting to emerge and the knowledge ga
Publisher: CRC Press
ISBN: 1482207257
Category : Medical
Languages : en
Pages : 278
Book Description
The endothelium is an excellent example of where biology meets physics and engineering. It must convert mechanical forces into chemical signals to maintain homeostasis. It also controls the immune response, drug delivery through the vasculature, and cancer metastasis. Basic understanding of these processes is starting to emerge and the knowledge ga
Mechanobiology
Author: Simon C. F. Rawlinson
Publisher: John Wiley & Sons
ISBN: 1118966155
Category : Science
Languages : en
Pages : 444
Book Description
An emerging field at the interface of biology and engineering, mechanobiology explores the mechanisms by which cells sense and respond to mechanical signals—and holds great promise in one day unravelling the mysteries of cellular and extracellular matrix mechanics to cure a broad range of diseases. Mechanobiology: Exploitation for Medical Benefit presents a comprehensive overview of principles of mechanobiology, highlighting the extent to which biological tissues are exposed to the mechanical environment, demonstrating the importance of the mechanical environment in living systems, and critically reviewing the latest experimental procedures in this emerging field. Featuring contributions from several top experts in the field, chapters begin with an introduction to fundamental mechanobiological principles; and then proceed to explore the relationship of this extensive force in nature to tissues of musculoskeletal systems, heart and lung vasculature, the kidney glomerulus, and cutaneous tissues. Examples of some current experimental models are presented conveying relevant aspects of mechanobiology, highlighting emerging trends and promising avenues of research in the development of innovative therapies. Timely and important, Mechanobiology: Exploitation for Medical Benefit offers illuminating insights into an emerging field that has the potential to revolutionise our comprehension of appropriate cell biology and the future of biomedical research.
Publisher: John Wiley & Sons
ISBN: 1118966155
Category : Science
Languages : en
Pages : 444
Book Description
An emerging field at the interface of biology and engineering, mechanobiology explores the mechanisms by which cells sense and respond to mechanical signals—and holds great promise in one day unravelling the mysteries of cellular and extracellular matrix mechanics to cure a broad range of diseases. Mechanobiology: Exploitation for Medical Benefit presents a comprehensive overview of principles of mechanobiology, highlighting the extent to which biological tissues are exposed to the mechanical environment, demonstrating the importance of the mechanical environment in living systems, and critically reviewing the latest experimental procedures in this emerging field. Featuring contributions from several top experts in the field, chapters begin with an introduction to fundamental mechanobiological principles; and then proceed to explore the relationship of this extensive force in nature to tissues of musculoskeletal systems, heart and lung vasculature, the kidney glomerulus, and cutaneous tissues. Examples of some current experimental models are presented conveying relevant aspects of mechanobiology, highlighting emerging trends and promising avenues of research in the development of innovative therapies. Timely and important, Mechanobiology: Exploitation for Medical Benefit offers illuminating insights into an emerging field that has the potential to revolutionise our comprehension of appropriate cell biology and the future of biomedical research.
Vascular Mechanobiology in Physiology and Disease
Author: Markus Hecker
Publisher: Springer Nature
ISBN: 3030631648
Category : Medical
Languages : en
Pages : 352
Book Description
This volume of the series Cardiac and Vascular Biology presents the most relevant aspects of vascular mechanobiology along with many more facets of this fascinating, timely and clinically highly relevant field. Mechanotransduction, mechanosensing, fluid shear stress, hameodynamics and cell fate, are just a few topics to name. All important aspects of vascular mechanobiology in health and disease are reviewed by some of the top experts in the field. This volume, together with a second title on cardiac mechanobiology featured in this series, will be of high relevance to scientists and clinical researchers in the area of vascular biology, cardiology and biomedical engineering.
Publisher: Springer Nature
ISBN: 3030631648
Category : Medical
Languages : en
Pages : 352
Book Description
This volume of the series Cardiac and Vascular Biology presents the most relevant aspects of vascular mechanobiology along with many more facets of this fascinating, timely and clinically highly relevant field. Mechanotransduction, mechanosensing, fluid shear stress, hameodynamics and cell fate, are just a few topics to name. All important aspects of vascular mechanobiology in health and disease are reviewed by some of the top experts in the field. This volume, together with a second title on cardiac mechanobiology featured in this series, will be of high relevance to scientists and clinical researchers in the area of vascular biology, cardiology and biomedical engineering.
Modern Mechanobiology
Author: Juhyun Lee
Publisher: CRC Press
ISBN: 1000020924
Category : Medical
Languages : en
Pages : 250
Book Description
Modern mechanobiology converges both engineering and medicine to address personalized medicine. This book is built on the previously well-received edition, Hemodynamics and Mechanobiology of Endothelium. The central theme is "omic" approaches to mechanosignal transduction underlying tissue development, injury, and repair. A cadre of investigators has contributed to the chapters, enriching the interface between mechanobiology and precision medicine for personalized diagnosis and intervention. The book begins with the fundamental basis of vascular disease in response to hemodynamic shear stress and then details cardiovascular development and regeneration, valvular and cardiac morphogenesis, mechanosensitive microRNA and histone unfolding, computational fluid dynamics, and light-sheet imaging. This edition represents a paradigm shift from traditional biomechanics and signal transduction to transgenic models, including novel zebrafish and chick embryos, and targets a wider readership from academia to industry and government agencies in the field of mechanobiology.
Publisher: CRC Press
ISBN: 1000020924
Category : Medical
Languages : en
Pages : 250
Book Description
Modern mechanobiology converges both engineering and medicine to address personalized medicine. This book is built on the previously well-received edition, Hemodynamics and Mechanobiology of Endothelium. The central theme is "omic" approaches to mechanosignal transduction underlying tissue development, injury, and repair. A cadre of investigators has contributed to the chapters, enriching the interface between mechanobiology and precision medicine for personalized diagnosis and intervention. The book begins with the fundamental basis of vascular disease in response to hemodynamic shear stress and then details cardiovascular development and regeneration, valvular and cardiac morphogenesis, mechanosensitive microRNA and histone unfolding, computational fluid dynamics, and light-sheet imaging. This edition represents a paradigm shift from traditional biomechanics and signal transduction to transgenic models, including novel zebrafish and chick embryos, and targets a wider readership from academia to industry and government agencies in the field of mechanobiology.
Mechanobiology Handbook, Second Edition
Author: Jiro Nagatomi
Publisher: CRC Press
ISBN: 042981674X
Category : Medical
Languages : en
Pages : 705
Book Description
Mechanobiology—the study of the effects of mechanics on biological events—has evolved to answer numerous research questions. Mechanobiology Handbook 2nd Edition is a reference book for engineers, scientists, and clinicians who are interested in mechanobiology and a textbook for senior undergraduate to graduate level students of this growing field. Readers will gain a comprehensive review of recent research findings as well as elementary chapters on solid mechanics, fluid mechanics, and molecular analysis techniques. The new edition presents, in addition to the chapters of the first edition, homework problem sets that are available online and reviews of research in uncovered areas. Moreover, the new edition includes chapters on statistical analysis, design of experiments and optical imaging. The editors of this book are researchers and educators in mechanobiology. They realized a need for a single volume to assist course instructors as a guide for didactic teaching of mechanobiology to a diverse student body. A mechanobiology course is frequently made up of both undergraduate and graduate students pursuing degrees in engineering, biology, or integrated engineering and biology. Their goal was to present both the elementary and cutting-edge aspects of mechanobiology in a manner that is accessible to students from many different academic levels and from various disciplinary backgrounds. Moreover, it is their hope that the readers of Mechanobiology Handbook 2nd Edition will find study questions at the end of each chapter useful for long-term learning and further discussion. Comprehensive collection of reviews of recent research Introductory materials in mechanics, biology, and statistics Discussion of pioneering and emerging mechanobiology concepts Presentation of cutting-edge mechanobiology research findings across various fields and organ systems End of chapter study questions, available online Considering the complexity of the mechanics and the biology of the human body, most of the world of mechanobiology remains to be studied. Since the field is still developing, the Mechanobiology Handbook raises many different viewpoints and approaches with the intention of stimulating further research endeavours.
Publisher: CRC Press
ISBN: 042981674X
Category : Medical
Languages : en
Pages : 705
Book Description
Mechanobiology—the study of the effects of mechanics on biological events—has evolved to answer numerous research questions. Mechanobiology Handbook 2nd Edition is a reference book for engineers, scientists, and clinicians who are interested in mechanobiology and a textbook for senior undergraduate to graduate level students of this growing field. Readers will gain a comprehensive review of recent research findings as well as elementary chapters on solid mechanics, fluid mechanics, and molecular analysis techniques. The new edition presents, in addition to the chapters of the first edition, homework problem sets that are available online and reviews of research in uncovered areas. Moreover, the new edition includes chapters on statistical analysis, design of experiments and optical imaging. The editors of this book are researchers and educators in mechanobiology. They realized a need for a single volume to assist course instructors as a guide for didactic teaching of mechanobiology to a diverse student body. A mechanobiology course is frequently made up of both undergraduate and graduate students pursuing degrees in engineering, biology, or integrated engineering and biology. Their goal was to present both the elementary and cutting-edge aspects of mechanobiology in a manner that is accessible to students from many different academic levels and from various disciplinary backgrounds. Moreover, it is their hope that the readers of Mechanobiology Handbook 2nd Edition will find study questions at the end of each chapter useful for long-term learning and further discussion. Comprehensive collection of reviews of recent research Introductory materials in mechanics, biology, and statistics Discussion of pioneering and emerging mechanobiology concepts Presentation of cutting-edge mechanobiology research findings across various fields and organ systems End of chapter study questions, available online Considering the complexity of the mechanics and the biology of the human body, most of the world of mechanobiology remains to be studied. Since the field is still developing, the Mechanobiology Handbook raises many different viewpoints and approaches with the intention of stimulating further research endeavours.
Mechanobiology
Author: Glen L. Niebur
Publisher: Elsevier
ISBN: 0128179325
Category : Science
Languages : en
Pages : 256
Book Description
Mechanobiology: From Molecular Sensing to Disease will provide a review of the current state of understanding of mechanobiology and its role in health and disease. It covers: Current understanding of the main molecular pathways by which cells sense and respond to mechanical stimuli, A review of diseases that with known or purported mechanobiological underpinnings; The role of mechanobiology in tissue engineering and regenerative medicine; Experimental methods to capture mechanobiological phenomena; Computational models in mechanobiology. - Presents our current understanding of the main molecular pathways by which cells sense and respond to mechanical stimuli - Provides a review of diseases with known or purported mechanobiological underpinnings - Includes the role of mechanobiology in tissue engineering and regenerative medicine - Covers experimental methods to capture mechanobiological phenomena
Publisher: Elsevier
ISBN: 0128179325
Category : Science
Languages : en
Pages : 256
Book Description
Mechanobiology: From Molecular Sensing to Disease will provide a review of the current state of understanding of mechanobiology and its role in health and disease. It covers: Current understanding of the main molecular pathways by which cells sense and respond to mechanical stimuli, A review of diseases that with known or purported mechanobiological underpinnings; The role of mechanobiology in tissue engineering and regenerative medicine; Experimental methods to capture mechanobiological phenomena; Computational models in mechanobiology. - Presents our current understanding of the main molecular pathways by which cells sense and respond to mechanical stimuli - Provides a review of diseases with known or purported mechanobiological underpinnings - Includes the role of mechanobiology in tissue engineering and regenerative medicine - Covers experimental methods to capture mechanobiological phenomena
The Science, Etiology and Mechanobiology of Diabetes and its Complications
Author: Amit Gefen
Publisher: Academic Press
ISBN: 0128210710
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
The Science, Etiology and Mechanobiology of Diabetes and Its Complications presents the most comprehensive synthesis of contemporary global research on diabetes, covering a novel and unique mechanobiological perspective – addressing prevention, management and treatment of tissue, organ and body system damage associated with diabetes and its complications. The book provides a unique approach to communicating diabetes-associated symptoms and opens avenues for development of novel therapeutic and preventive methods. It offers descriptive pathophysiology of diabetes and its complications with great emphasis on mechanobiology. Content coverage also includes management of tissue, organ and body system damage caused by chronic hyperglycemia. Biologists, life scientists, physicians, pharmacists, biomedical engineers, medical physicists, biomathematicians and computer scientists who are interested in the state-of-science and current challenges in the mechanobiology of diabetes should find this book very useful. Likewise, medical researchers in fields such as endocrinology, cardiovascular medicine, oncology, obesity, the immune system, inflammation and wound care and others who wish to be updated about the latest achievements in this exciting arena of research will find that information here. - Covers the state-of-knowledge in diabetes research from a mechanobiological perspective, including cell death and (neural, connective, adipose, vascular, renal etc.) tissue damage cascades and healing processes - Describes state-of-the-art technology in prevention, diagnosis, prognosis and treatment of tissue, organ and body system damage caused by chronic hyperglycemia and diabetes - Explores emerging research directions and future technology trends in the field of diabetes prevention and care, including common complications of diabetes (foot ulcers and amputation, peripheral neuropathy, retinal damage, renal damage, vascular and cardiac damage, connective tissue damage etc.) at the early stage of research and development in academia and industry
Publisher: Academic Press
ISBN: 0128210710
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
The Science, Etiology and Mechanobiology of Diabetes and Its Complications presents the most comprehensive synthesis of contemporary global research on diabetes, covering a novel and unique mechanobiological perspective – addressing prevention, management and treatment of tissue, organ and body system damage associated with diabetes and its complications. The book provides a unique approach to communicating diabetes-associated symptoms and opens avenues for development of novel therapeutic and preventive methods. It offers descriptive pathophysiology of diabetes and its complications with great emphasis on mechanobiology. Content coverage also includes management of tissue, organ and body system damage caused by chronic hyperglycemia. Biologists, life scientists, physicians, pharmacists, biomedical engineers, medical physicists, biomathematicians and computer scientists who are interested in the state-of-science and current challenges in the mechanobiology of diabetes should find this book very useful. Likewise, medical researchers in fields such as endocrinology, cardiovascular medicine, oncology, obesity, the immune system, inflammation and wound care and others who wish to be updated about the latest achievements in this exciting arena of research will find that information here. - Covers the state-of-knowledge in diabetes research from a mechanobiological perspective, including cell death and (neural, connective, adipose, vascular, renal etc.) tissue damage cascades and healing processes - Describes state-of-the-art technology in prevention, diagnosis, prognosis and treatment of tissue, organ and body system damage caused by chronic hyperglycemia and diabetes - Explores emerging research directions and future technology trends in the field of diabetes prevention and care, including common complications of diabetes (foot ulcers and amputation, peripheral neuropathy, retinal damage, renal damage, vascular and cardiac damage, connective tissue damage etc.) at the early stage of research and development in academia and industry
Cardiovascular Mechanobiology, 2nd edition
Author: Markus Hecker
Publisher: Frontiers Media SA
ISBN: 2832530508
Category : Science
Languages : en
Pages : 169
Book Description
Biomechanical forces play a major role in organ development, shape and function. When exceeding the physiological range, however, they may become detrimental for organ structure and function. This is probably best exemplified by the cardiovascular system, with both the heart and blood vessels being continuously exposed to the biomechanical forces exerted by the flow of blood. In the heart, it is the build-up of pressure inside the ventricles that allows the ejection of blood into the pulmonary and systemic circulation. The luminal diameter of the small arteries in both parts of the circulation determines the resistance to flow. Hence it also determines the level of blood pressure in both the pulmonary and systemic circulation and thus the afterload for both ventricles of the heart. A narrowing of the small arteries (e.g. due to an increase in tone) therefore leads to an increase in blood pressure in the affected part of the circulation. This will decrease organ perfusion but increase the afterload for the corresponding ventricle of the heart. Consequently, the affected ventricle must build up more pressure to maintain cardiac output. However, if the rise in blood pressure (pulmonary or arterial hypertension) persists the increase in wall tension can no longer be compensated by active constriction, thereby forcing the ventricle to resort to other means to unload itself. Typically, this is achieved by structural alterations in its wall which becomes thicker (hypertrophy) and stiffer (remodelling of the extracellular matrix). Ultimately, this maladaptive response may lead to dysfunction and eventually failure of the ventricle, which would only be able to eject a significantly smaller amount of blood into circulation. The increase in wall tension has resulted in an increased stretching of the cardiomyocytes as well as non-cardiomyocytes, such as cardiac fibroblasts, which in turn alters both their phenotype and their environment. Research into the mechanobiology of the heart aims to unravel the molecular and cellular mechanisms underlying the physiological response of the heart to load to learn what goes wrong when the heart is faced with sustained pressure overload. This may pave the way to therapeutically interfering with this maladaptive response and thus preventing either the initial hypertrophy or its transition into heart failure. While the heart is mainly subjected to pressure hence stretch as a biomechanical force, the mechanobiology of vascular cells is somewhat more complex. Endothelial cells lining the luminal surface of each blood vessel are continuously subjected to the viscous drag of flowing blood (referred to as fluid shear stress). Fluid shear stress mainly affects the endothelial cells of the small arteries and arterioles, maintaining them in a dormant phenotype. If blood flow is disturbed (e.g. at arterial bifurcations or curvatures) fluid shear stress declines and may give rise to a shift in phenotype of the endothelial cells. A shift from anti-inflammatory to pro-inflammatory in combination with the reduced flow at these sites may enable leukocyte recruitment and diapedesis, which results in a pro-inflammatory response in the vessel wall. Endothelial cells and in particular vascular smooth muscle cells are subjected to another biomechanical force: the blood pressure. Volume-dependent distention of the vessel wall (which can be achieved through an increase in blood flow) results in an increase in wall tension, thereby stretching of the endothelial and smooth muscle cells. Like the cardiomyocytes of the heart, the vascular smooth muscle cells of the small arteries and arterioles try to normalise wall tension by active constriction, which cannot be maintained for long. These cells subsequently undergo hypertrophy or hyperplasia (depending on the size of the blood vessel) and remodel the extracellular matrix so that the vessel wall also becomes thicker and stiffer. This in turn raises their resistance to flow and may contribute to the increase in blood pressure in either the pulmonary or systemic circulation. Research into the mechanobiology of the blood vessels aims to unravel the molecular and cellular mechanisms underlying the physiological response of the vascular cells to pressure (wall tension) and flow (shear stress). It also aims to uncover what goes wrong (e.g. in arteriosclerosis or hypertension) and to eventually specifically interfere with these maladaptive remodelling processes. The aforementioned aspects of cardiovascular mechanobiology along with many more facets of this fascinating, timely and highly clinically relevant field of research are addressed by the original research and review articles within this Research Topic.
Publisher: Frontiers Media SA
ISBN: 2832530508
Category : Science
Languages : en
Pages : 169
Book Description
Biomechanical forces play a major role in organ development, shape and function. When exceeding the physiological range, however, they may become detrimental for organ structure and function. This is probably best exemplified by the cardiovascular system, with both the heart and blood vessels being continuously exposed to the biomechanical forces exerted by the flow of blood. In the heart, it is the build-up of pressure inside the ventricles that allows the ejection of blood into the pulmonary and systemic circulation. The luminal diameter of the small arteries in both parts of the circulation determines the resistance to flow. Hence it also determines the level of blood pressure in both the pulmonary and systemic circulation and thus the afterload for both ventricles of the heart. A narrowing of the small arteries (e.g. due to an increase in tone) therefore leads to an increase in blood pressure in the affected part of the circulation. This will decrease organ perfusion but increase the afterload for the corresponding ventricle of the heart. Consequently, the affected ventricle must build up more pressure to maintain cardiac output. However, if the rise in blood pressure (pulmonary or arterial hypertension) persists the increase in wall tension can no longer be compensated by active constriction, thereby forcing the ventricle to resort to other means to unload itself. Typically, this is achieved by structural alterations in its wall which becomes thicker (hypertrophy) and stiffer (remodelling of the extracellular matrix). Ultimately, this maladaptive response may lead to dysfunction and eventually failure of the ventricle, which would only be able to eject a significantly smaller amount of blood into circulation. The increase in wall tension has resulted in an increased stretching of the cardiomyocytes as well as non-cardiomyocytes, such as cardiac fibroblasts, which in turn alters both their phenotype and their environment. Research into the mechanobiology of the heart aims to unravel the molecular and cellular mechanisms underlying the physiological response of the heart to load to learn what goes wrong when the heart is faced with sustained pressure overload. This may pave the way to therapeutically interfering with this maladaptive response and thus preventing either the initial hypertrophy or its transition into heart failure. While the heart is mainly subjected to pressure hence stretch as a biomechanical force, the mechanobiology of vascular cells is somewhat more complex. Endothelial cells lining the luminal surface of each blood vessel are continuously subjected to the viscous drag of flowing blood (referred to as fluid shear stress). Fluid shear stress mainly affects the endothelial cells of the small arteries and arterioles, maintaining them in a dormant phenotype. If blood flow is disturbed (e.g. at arterial bifurcations or curvatures) fluid shear stress declines and may give rise to a shift in phenotype of the endothelial cells. A shift from anti-inflammatory to pro-inflammatory in combination with the reduced flow at these sites may enable leukocyte recruitment and diapedesis, which results in a pro-inflammatory response in the vessel wall. Endothelial cells and in particular vascular smooth muscle cells are subjected to another biomechanical force: the blood pressure. Volume-dependent distention of the vessel wall (which can be achieved through an increase in blood flow) results in an increase in wall tension, thereby stretching of the endothelial and smooth muscle cells. Like the cardiomyocytes of the heart, the vascular smooth muscle cells of the small arteries and arterioles try to normalise wall tension by active constriction, which cannot be maintained for long. These cells subsequently undergo hypertrophy or hyperplasia (depending on the size of the blood vessel) and remodel the extracellular matrix so that the vessel wall also becomes thicker and stiffer. This in turn raises their resistance to flow and may contribute to the increase in blood pressure in either the pulmonary or systemic circulation. Research into the mechanobiology of the blood vessels aims to unravel the molecular and cellular mechanisms underlying the physiological response of the vascular cells to pressure (wall tension) and flow (shear stress). It also aims to uncover what goes wrong (e.g. in arteriosclerosis or hypertension) and to eventually specifically interfere with these maladaptive remodelling processes. The aforementioned aspects of cardiovascular mechanobiology along with many more facets of this fascinating, timely and highly clinically relevant field of research are addressed by the original research and review articles within this Research Topic.