Dirichlet Forms and Related Topics

Dirichlet Forms and Related Topics PDF Author: Zhen-Qing Chen
Publisher: Springer Nature
ISBN: 9811946728
Category : Mathematics
Languages : en
Pages : 572

Get Book Here

Book Description
This conference proceeding contains 27 peer-reviewed invited papers from leading experts as well as young researchers all over the world in the related fields that Professor Fukushima has made important contributions to. These 27 papers cover a wide range of topics in probability theory, ranging from Dirichlet form theory, Markov processes, heat kernel estimates, entropy on Wiener spaces, analysis on fractal spaces, random spanning tree and Poissonian loop ensemble, random Riemannian geometry, SLE, space-time partial differential equations of higher order, infinite particle systems, Dyson model, functional inequalities, branching process, to machine learning and Hermitizable problems for complex matrices. Researchers and graduate students interested in these areas will find this book appealing.

Dirichlet Forms and Related Topics

Dirichlet Forms and Related Topics PDF Author: Zhen-Qing Chen
Publisher: Springer Nature
ISBN: 9811946728
Category : Mathematics
Languages : en
Pages : 572

Get Book Here

Book Description
This conference proceeding contains 27 peer-reviewed invited papers from leading experts as well as young researchers all over the world in the related fields that Professor Fukushima has made important contributions to. These 27 papers cover a wide range of topics in probability theory, ranging from Dirichlet form theory, Markov processes, heat kernel estimates, entropy on Wiener spaces, analysis on fractal spaces, random spanning tree and Poissonian loop ensemble, random Riemannian geometry, SLE, space-time partial differential equations of higher order, infinite particle systems, Dyson model, functional inequalities, branching process, to machine learning and Hermitizable problems for complex matrices. Researchers and graduate students interested in these areas will find this book appealing.

From Classical Analysis to Analysis on Fractals

From Classical Analysis to Analysis on Fractals PDF Author: Patricia Alonso Ruiz
Publisher: Springer Nature
ISBN: 3031378008
Category : Mathematics
Languages : en
Pages : 294

Get Book Here

Book Description
Over the course of his distinguished career, Robert Strichartz (1943-2021) had a substantial impact on the field of analysis with his deep, original results in classical harmonic, functional, and spectral analysis, and in the newly developed analysis on fractals. This is the first volume of a tribute to his work and legacy, featuring chapters that reflect his mathematical interests, written by his colleagues and friends. An introductory chapter summarizes his broad and varied mathematical work and highlights his profound contributions as a mathematical mentor. The remaining articles are grouped into three sections – functional and harmonic analysis on Euclidean spaces, analysis on manifolds, and analysis on fractals – and explore Strichartz’ contributions to these areas, as well as some of the latest developments.

Analysis and Geometry of Metric Measure Spaces

Analysis and Geometry of Metric Measure Spaces PDF Author: Galia Devora Dafni
Publisher: American Mathematical Soc.
ISBN: 0821894188
Category : Mathematics
Languages : en
Pages : 241

Get Book Here

Book Description
Contains lecture notes from most of the courses presented at the 50th anniversary edition of the Seminaire de Mathematiques Superieure in Montreal. This 2011 summer school was devoted to the analysis and geometry of metric measure spaces, and featured much interplay between this subject and the emergent topic of optimal transportation.

Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs

Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs PDF Author: Alexander Grigor'yan
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311070076X
Category : Mathematics
Languages : en
Pages : 526

Get Book Here

Book Description
The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.

Probabilistic Approach to Geometry

Probabilistic Approach to Geometry PDF Author: Motoko Kotani
Publisher: Advanced Studies in Pure Mathe
ISBN: 9784931469587
Category : Mathematics
Languages : en
Pages : 514

Get Book Here

Book Description
The first Seasonal Institute of the Mathematical Society of Japan (MSJ-SI) “Probabilistic Approach to Geometry” was held at Kyoto University, Japan, on 28th July 2008 - 8th August, 2008. The conference aimed to make interactions between Geometry and Probability Theory and seek for new directions of those research areas. This volume contains the proceedings, selected research articles based on the talks, including survey articles on random groups, rough paths, and heat kernels by the survey lecturers in the conference. The readers will benefit of exploring in this developing research area.Published by Mathematical Society of Japan and distributed by World Scientific Publishing Co. for all markets except North America

Neumann and Dirichlet Heat Kernels in Inner Uniform Domains

Neumann and Dirichlet Heat Kernels in Inner Uniform Domains PDF Author: Pavel Gyrya
Publisher:
ISBN: 9782856293065
Category : Heat equation
Languages : en
Pages : 0

Get Book Here

Book Description
This monograph focuses on the heat equation with either the Neumann or the Dirichlet boundary condition in unbounded domains in Euclidean space, Riemannian manifolds, and in the more general context of certain regular local Dirichlet spaces. In works by A. Grigor'yan, L. Saloff-Coste, and K.-T. Sturm, the equivalence between the parabolic Harnack inequality, the two-sided Gaussian heat kernel estimate, the Poincare inequality and the volume doubling property is established in a very general context. The authors use this result to provide precise two-sided heat kernel estimates in a large class of domains described in terms of their inner intrinsic metric and called inner (or intrinsically) uniform domains. Perhaps surprisingly, they treat both the Neumann boundary condition and the Dirichlet boundary condition using essentially the same approach, albeit with the additional help of a Doob's h-transform in the case of Dirichlet boundary condition. The main results are new even when applied to Euclidean domains with smooth boundary where they capture the global effect of the condition of inner uniformity as, for instance, in the case of domains that are the complement of a convex set in Euclidean space.

Random Walk and the Heat Equation

Random Walk and the Heat Equation PDF Author: Gregory F. Lawler
Publisher: American Mathematical Soc.
ISBN: 0821848291
Category : Mathematics
Languages : en
Pages : 170

Get Book Here

Book Description
The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.

Geometric Control Theory and Sub-Riemannian Geometry

Geometric Control Theory and Sub-Riemannian Geometry PDF Author: Gianna Stefani
Publisher: Springer
ISBN: 331902132X
Category : Mathematics
Languages : en
Pages : 385

Get Book Here

Book Description
Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.

Stability of Heat Kernel Estimates for Symmetric Non-Local Dirichlet Forms

Stability of Heat Kernel Estimates for Symmetric Non-Local Dirichlet Forms PDF Author: Zhen-Qing Chen
Publisher: American Mathematical Society
ISBN: 1470448637
Category : Mathematics
Languages : en
Pages : 89

Get Book Here

Book Description
View the abstract.

Fokker-Planck-Kolmogorov Equations

Fokker-Planck-Kolmogorov Equations PDF Author: Vladimir I. Bogachev
Publisher: American Mathematical Soc.
ISBN: 1470425580
Category : Mathematics
Languages : en
Pages : 495

Get Book Here

Book Description
This book gives an exposition of the principal concepts and results related to second order elliptic and parabolic equations for measures, the main examples of which are Fokker-Planck-Kolmogorov equations for stationary and transition probabilities of diffusion processes. Existence and uniqueness of solutions are studied along with existence and Sobolev regularity of their densities and upper and lower bounds for the latter. The target readership includes mathematicians and physicists whose research is related to diffusion processes as well as elliptic and parabolic equations.