Author: Vladimir Peller
Publisher: Springer Science & Business Media
ISBN: 0387216812
Category : Mathematics
Languages : en
Pages : 789
Book Description
The purpose of this book is to describe the theory of Hankel operators, one of the most important classes of operators on spaces of analytic func tions. Hankel operators can be defined as operators having infinite Hankel matrices (i. e. , matrices with entries depending only on the sum of the co ordinates) with respect to some orthonormal basis. Finite matrices with this property were introduced by Hankel, who found interesting algebraic properties of their determinants. One of the first results on infinite Han kel matrices was obtained by Kronecker, who characterized Hankel matri ces of finite rank as those whose entries are Taylor coefficients of rational functions. Since then Hankel operators (or matrices) have found numerous applications in classical problems of analysis, such as moment problems, orthogonal polynomials, etc. Hankel operators admit various useful realizations, such as operators on spaces of analytic functions, integral operators on function spaces on (0,00), operators on sequence spaces. In 1957 Nehari described the bounded Hankel operators on the sequence space £2. This description turned out to be very important and started the contemporary period of the study of Hankel operators. We begin the book with introductory Chapter 1, which defines Hankel operators and presents their basic properties. We consider different realiza tions of Hankel operators and important connections of Hankel operators with the spaces BMa and V MO, Sz. -Nagy-Foais functional model, re producing kernels of the Hardy class H2, moment problems, and Carleson imbedding operators.
Hankel Operators and Their Applications
Author: Vladimir Peller
Publisher: Springer Science & Business Media
ISBN: 0387216812
Category : Mathematics
Languages : en
Pages : 789
Book Description
The purpose of this book is to describe the theory of Hankel operators, one of the most important classes of operators on spaces of analytic func tions. Hankel operators can be defined as operators having infinite Hankel matrices (i. e. , matrices with entries depending only on the sum of the co ordinates) with respect to some orthonormal basis. Finite matrices with this property were introduced by Hankel, who found interesting algebraic properties of their determinants. One of the first results on infinite Han kel matrices was obtained by Kronecker, who characterized Hankel matri ces of finite rank as those whose entries are Taylor coefficients of rational functions. Since then Hankel operators (or matrices) have found numerous applications in classical problems of analysis, such as moment problems, orthogonal polynomials, etc. Hankel operators admit various useful realizations, such as operators on spaces of analytic functions, integral operators on function spaces on (0,00), operators on sequence spaces. In 1957 Nehari described the bounded Hankel operators on the sequence space £2. This description turned out to be very important and started the contemporary period of the study of Hankel operators. We begin the book with introductory Chapter 1, which defines Hankel operators and presents their basic properties. We consider different realiza tions of Hankel operators and important connections of Hankel operators with the spaces BMa and V MO, Sz. -Nagy-Foais functional model, re producing kernels of the Hardy class H2, moment problems, and Carleson imbedding operators.
Publisher: Springer Science & Business Media
ISBN: 0387216812
Category : Mathematics
Languages : en
Pages : 789
Book Description
The purpose of this book is to describe the theory of Hankel operators, one of the most important classes of operators on spaces of analytic func tions. Hankel operators can be defined as operators having infinite Hankel matrices (i. e. , matrices with entries depending only on the sum of the co ordinates) with respect to some orthonormal basis. Finite matrices with this property were introduced by Hankel, who found interesting algebraic properties of their determinants. One of the first results on infinite Han kel matrices was obtained by Kronecker, who characterized Hankel matri ces of finite rank as those whose entries are Taylor coefficients of rational functions. Since then Hankel operators (or matrices) have found numerous applications in classical problems of analysis, such as moment problems, orthogonal polynomials, etc. Hankel operators admit various useful realizations, such as operators on spaces of analytic functions, integral operators on function spaces on (0,00), operators on sequence spaces. In 1957 Nehari described the bounded Hankel operators on the sequence space £2. This description turned out to be very important and started the contemporary period of the study of Hankel operators. We begin the book with introductory Chapter 1, which defines Hankel operators and presents their basic properties. We consider different realiza tions of Hankel operators and important connections of Hankel operators with the spaces BMa and V MO, Sz. -Nagy-Foais functional model, re producing kernels of the Hardy class H2, moment problems, and Carleson imbedding operators.
An Introduction to Hankel Operators
Author: Jonathan R. Partington
Publisher: Cambridge University Press
ISBN: 9780521367912
Category : Mathematics
Languages : en
Pages : 116
Book Description
Hankel operators are of wide application in mathematics and engineering and this account of them is both elementary and rigorous.
Publisher: Cambridge University Press
ISBN: 9780521367912
Category : Mathematics
Languages : en
Pages : 116
Book Description
Hankel operators are of wide application in mathematics and engineering and this account of them is both elementary and rigorous.
Operator Theory, Functional Analysis and Applications
Author: M. Amélia Bastos
Publisher: Birkhäuser
ISBN: 9783030519445
Category : Mathematics
Languages : en
Pages : 657
Book Description
This book presents 30 articles on the topic areas discussed at the 30th “International Workshop on Operator Theory and its Applications”, held in Lisbon in July 2019. The contributions include both expository essays and original research papers reflecting recent advances in the traditional IWOTA areas and emerging adjacent fields, as well as the applications of Operator Theory and Functional Analysis. The topics range from C*–algebras and Banach *–algebras, Sturm-Liouville theory, integrable systems, dilation theory, frame theory, Toeplitz, Hankel, and singular integral operators, to questions from lattice, group and matrix theories, complex analysis, harmonic analysis, and function spaces. Given its scope, the book is chiefly intended for researchers and graduate students in the areas of Operator Theory, Functional Analysis, their applications and adjacent fields.
Publisher: Birkhäuser
ISBN: 9783030519445
Category : Mathematics
Languages : en
Pages : 657
Book Description
This book presents 30 articles on the topic areas discussed at the 30th “International Workshop on Operator Theory and its Applications”, held in Lisbon in July 2019. The contributions include both expository essays and original research papers reflecting recent advances in the traditional IWOTA areas and emerging adjacent fields, as well as the applications of Operator Theory and Functional Analysis. The topics range from C*–algebras and Banach *–algebras, Sturm-Liouville theory, integrable systems, dilation theory, frame theory, Toeplitz, Hankel, and singular integral operators, to questions from lattice, group and matrix theories, complex analysis, harmonic analysis, and function spaces. Given its scope, the book is chiefly intended for researchers and graduate students in the areas of Operator Theory, Functional Analysis, their applications and adjacent fields.
Hankel Operators on Hilbert Space
Author: S. C. Power
Publisher: Pitman Publishing
ISBN:
Category : Mathematics
Languages : en
Pages : 112
Book Description
Publisher: Pitman Publishing
ISBN:
Category : Mathematics
Languages : en
Pages : 112
Book Description
Holomorphic Spaces
Author: Sheldon Jay Axler
Publisher: Cambridge University Press
ISBN: 9780521631938
Category : Mathematics
Languages : en
Pages : 490
Book Description
Expository articles describing the role Hardy spaces, Bergman spaces, Dirichlet spaces, and Hankel and Toeplitz operators play in modern analysis.
Publisher: Cambridge University Press
ISBN: 9780521631938
Category : Mathematics
Languages : en
Pages : 490
Book Description
Expository articles describing the role Hardy spaces, Bergman spaces, Dirichlet spaces, and Hankel and Toeplitz operators play in modern analysis.
Toeplitz Matrices and Operators
Author: Nikolaï Nikolski
Publisher: Cambridge University Press
ISBN: 110719850X
Category : Mathematics
Languages : en
Pages : 453
Book Description
A friendly introduction to Toeplitz theory and its applications throughout modern functional analysis.
Publisher: Cambridge University Press
ISBN: 110719850X
Category : Mathematics
Languages : en
Pages : 453
Book Description
A friendly introduction to Toeplitz theory and its applications throughout modern functional analysis.
An Introduction to Operators on the Hardy-Hilbert Space
Author: Ruben A. Martinez-Avendano
Publisher: Springer Science & Business Media
ISBN: 0387485783
Category : Mathematics
Languages : en
Pages : 230
Book Description
This book offers an elementary and engaging introduction to operator theory on the Hardy-Hilbert space. It provides a firm foundation for the study of all spaces of analytic functions and of the operators on them. Blending techniques from "soft" and "hard" analysis, the book contains clear and beautiful proofs. There are numerous exercises at the end of each chapter, along with a brief guide for further study which includes references to applications to topics in engineering.
Publisher: Springer Science & Business Media
ISBN: 0387485783
Category : Mathematics
Languages : en
Pages : 230
Book Description
This book offers an elementary and engaging introduction to operator theory on the Hardy-Hilbert space. It provides a firm foundation for the study of all spaces of analytic functions and of the operators on them. Blending techniques from "soft" and "hard" analysis, the book contains clear and beautiful proofs. There are numerous exercises at the end of each chapter, along with a brief guide for further study which includes references to applications to topics in engineering.
The d-bar Neumann Problem and Schrödinger Operators
Author: Friedrich Haslinger
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110377837
Category : Mathematics
Languages : en
Pages : 298
Book Description
The topic of this book is located at the intersection of complex analysis, operator theory and partial differential equations. It begins with results on the canonical solution operator to restricted to Bergman spaces of holomorphic d-bar functions in one and several complex variables.These operators are Hankel operators of special type. In the following the general complex is investigated on d-bar spaces over bounded pseudoconvex domains and on weighted d-bar spaces. The main part is devoted to the spectral analysis of the complex Laplacian and to compactness of the Neumann operator. The last part contains a detailed account of the application of the methods to Schrödinger operators, Pauli and Dirac operators and to Witten-Laplacians. It is assumed that the reader has a basic knowledge of complex analysis, functional analysis and topology. With minimal prerequisites required, this book provides a systematic introduction to an active area of research for both students at a bachelor level and mathematicians.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110377837
Category : Mathematics
Languages : en
Pages : 298
Book Description
The topic of this book is located at the intersection of complex analysis, operator theory and partial differential equations. It begins with results on the canonical solution operator to restricted to Bergman spaces of holomorphic d-bar functions in one and several complex variables.These operators are Hankel operators of special type. In the following the general complex is investigated on d-bar spaces over bounded pseudoconvex domains and on weighted d-bar spaces. The main part is devoted to the spectral analysis of the complex Laplacian and to compactness of the Neumann operator. The last part contains a detailed account of the application of the methods to Schrödinger operators, Pauli and Dirac operators and to Witten-Laplacians. It is assumed that the reader has a basic knowledge of complex analysis, functional analysis and topology. With minimal prerequisites required, this book provides a systematic introduction to an active area of research for both students at a bachelor level and mathematicians.
Operator Theory, Operator Algebras, and Matrix Theory
Author: Carlos André
Publisher: Birkhäuser
ISBN: 3319724495
Category : Mathematics
Languages : en
Pages : 381
Book Description
This book consists of invited survey articles and research papers in the scientific areas of the “International Workshop on Operator Algebras, Operator Theory and Applications,” which was held in Lisbon in July 2016. Reflecting recent developments in the field of algebras of operators, operator theory and matrix theory, it particularly focuses on groupoid algebras and Fredholm conditions, algebras of approximation sequences, C* algebras of convolution type operators, index theorems, spectrum and numerical range of operators, extreme supercharacters of infinite groups, quantum dynamics and operator algebras, and inverse eigenvalue problems. Establishing bridges between the three related areas of operator algebras, operator theory, and matrix theory, the book is aimed at researchers and graduate students who use results from these areas.
Publisher: Birkhäuser
ISBN: 3319724495
Category : Mathematics
Languages : en
Pages : 381
Book Description
This book consists of invited survey articles and research papers in the scientific areas of the “International Workshop on Operator Algebras, Operator Theory and Applications,” which was held in Lisbon in July 2016. Reflecting recent developments in the field of algebras of operators, operator theory and matrix theory, it particularly focuses on groupoid algebras and Fredholm conditions, algebras of approximation sequences, C* algebras of convolution type operators, index theorems, spectrum and numerical range of operators, extreme supercharacters of infinite groups, quantum dynamics and operator algebras, and inverse eigenvalue problems. Establishing bridges between the three related areas of operator algebras, operator theory, and matrix theory, the book is aimed at researchers and graduate students who use results from these areas.
Analysis of Toeplitz Operators
Author: Albrecht Böttcher
Publisher: Springer Science & Business Media
ISBN: 366202652X
Category : Mathematics
Languages : en
Pages : 511
Book Description
A revised introduction to the advanced analysis of block Toeplitz operators including recent research. This book builds on the success of the first edition which has been used as a standard reference for fifteen years. Topics range from the analysis of locally sectorial matrix functions to Toeplitz and Wiener-Hopf determinants. This will appeal to both graduate students and specialists in the theory of Toeplitz operators.
Publisher: Springer Science & Business Media
ISBN: 366202652X
Category : Mathematics
Languages : en
Pages : 511
Book Description
A revised introduction to the advanced analysis of block Toeplitz operators including recent research. This book builds on the success of the first edition which has been used as a standard reference for fifteen years. Topics range from the analysis of locally sectorial matrix functions to Toeplitz and Wiener-Hopf determinants. This will appeal to both graduate students and specialists in the theory of Toeplitz operators.