Green's Kernels and Meso-Scale Approximations in Perforated Domains

Green's Kernels and Meso-Scale Approximations in Perforated Domains PDF Author: Vladimir Maz'ya
Publisher: Springer
ISBN: 3319003577
Category : Mathematics
Languages : en
Pages : 258

Get Book

Book Description
There are a wide range of applications in physics and structural mechanics involving domains with singular perturbations of the boundary. Examples include perforated domains and bodies with defects of different types. The accurate direct numerical treatment of such problems remains a challenge. Asymptotic approximations offer an alternative, efficient solution. Green’s function is considered here as the main object of study rather than a tool for generating solutions of specific boundary value problems. The uniformity of the asymptotic approximations is the principal point of attention. We also show substantial links between Green’s functions and solutions of boundary value problems for meso-scale structures. Such systems involve a large number of small inclusions, so that a small parameter, the relative size of an inclusion, may compete with a large parameter, represented as an overall number of inclusions. The main focus of the present text is on two topics: (a) asymptotics of Green’s kernels in domains with singularly perturbed boundaries and (b) meso-scale asymptotic approximations of physical fields in non-periodic domains with many inclusions. The novel feature of these asymptotic approximations is their uniformity with respect to the independent variables. This book addresses the needs of mathematicians, physicists and engineers, as well as research students interested in asymptotic analysis and numerical computations for solutions to partial differential equations.

Green's Kernels and Meso-Scale Approximations in Perforated Domains

Green's Kernels and Meso-Scale Approximations in Perforated Domains PDF Author: Vladimir Maz'ya
Publisher: Springer
ISBN: 3319003577
Category : Mathematics
Languages : en
Pages : 258

Get Book

Book Description
There are a wide range of applications in physics and structural mechanics involving domains with singular perturbations of the boundary. Examples include perforated domains and bodies with defects of different types. The accurate direct numerical treatment of such problems remains a challenge. Asymptotic approximations offer an alternative, efficient solution. Green’s function is considered here as the main object of study rather than a tool for generating solutions of specific boundary value problems. The uniformity of the asymptotic approximations is the principal point of attention. We also show substantial links between Green’s functions and solutions of boundary value problems for meso-scale structures. Such systems involve a large number of small inclusions, so that a small parameter, the relative size of an inclusion, may compete with a large parameter, represented as an overall number of inclusions. The main focus of the present text is on two topics: (a) asymptotics of Green’s kernels in domains with singularly perturbed boundaries and (b) meso-scale asymptotic approximations of physical fields in non-periodic domains with many inclusions. The novel feature of these asymptotic approximations is their uniformity with respect to the independent variables. This book addresses the needs of mathematicians, physicists and engineers, as well as research students interested in asymptotic analysis and numerical computations for solutions to partial differential equations.

Singularly Perturbed Boundary Value Problems

Singularly Perturbed Boundary Value Problems PDF Author: Matteo Dalla Riva
Publisher: Springer Nature
ISBN: 3030762599
Category : Mathematics
Languages : en
Pages : 672

Get Book

Book Description
This book is devoted to the analysis of the basic boundary value problems for the Laplace equation in singularly perturbed domains. The main purpose is to illustrate a method called Functional Analytic Approach, to describe the dependence of the solutions upon a singular perturbation parameter in terms of analytic functions. Here the focus is on domains with small holes and the perturbation parameter is the size of the holes. The book is the first introduction to the topic and covers the theoretical material and its applications to a series of problems that range from simple illustrative examples to more involved research results. The Functional Analytic Approach makes constant use of the integral representation method for the solutions of boundary value problems, of Potential Theory, of the Theory of Analytic Functions both in finite and infinite dimension, and of Nonlinear Functional Analysis. Designed to serve various purposes and readerships, the extensive introductory part spanning Chapters 1–7 can be used as a reference textbook for graduate courses on classical Potential Theory and its applications to boundary value problems. The early chapters also contain results that are rarely presented in the literature and may also, therefore, attract the interest of more expert readers. The exposition moves on to introduce the Functional Analytic Approach. A reader looking for a quick introduction to the method can find simple illustrative examples specifically designed for this purpose. More expert readers will find a comprehensive presentation of the Functional Analytic Approach, which allows a comparison between the approach of the book and the more classical expansion methods of Asymptotic Analysis and offers insights on the specific features of the approach and its applications to linear and nonlinear boundary value problems.

Multiscale Model Reduction

Multiscale Model Reduction PDF Author: Eric Chung
Publisher: Springer Nature
ISBN: 3031204093
Category : Mathematics
Languages : en
Pages : 499

Get Book

Book Description
This monograph is devoted to the study of multiscale model reduction methods from the point of view of multiscale finite element methods. Multiscale numerical methods have become popular tools for modeling processes with multiple scales. These methods allow reducing the degrees of freedom based on local offline computations. Moreover, these methods allow deriving rigorous macroscopic equations for multiscale problems without scale separation and high contrast. Multiscale methods are also used to design efficient solvers. This book offers a combination of analytical and numerical methods designed for solving multiscale problems. The book mostly focuses on methods that are based on multiscale finite element methods. Both applications and theoretical developments in this field are presented. The book is suitable for graduate students and researchers, who are interested in this topic.

Mechanics of High-Contrast Elastic Solids

Mechanics of High-Contrast Elastic Solids PDF Author: Holm Altenbach
Publisher: Springer Nature
ISBN: 303124141X
Category : Technology & Engineering
Languages : en
Pages : 271

Get Book

Book Description
This book contains the most recent results in the area of strongly inhomogeneous composite structures, including layered materials as well as continua with microstructure. This collection of papers mainly arises from the Euromech Colloquium No. 626 on “Mechanics of High-Contrast Elastic Composites”. Focus is set on the peculiar mechanical behaviour caused by adjoining widely different structural elements (high contrast) in terms of material and/or geometrical properties.

Getting Acquainted with Homogenization and Multiscale

Getting Acquainted with Homogenization and Multiscale PDF Author: Leonid Berlyand
Publisher: Springer
ISBN: 303001777X
Category : Computers
Languages : en
Pages : 178

Get Book

Book Description
The objective of this book is to navigate beginning graduate students in mathematics and engineering through a mature field of multiscale problems in homogenization theory and to provide an idea of its broad scope. An overview of a wide spectrum of homogenization techniques ranging from classical two-scale asymptotic expansions to Gamma convergence and the rapidly developing field of stochastic homogenization is presented. The mathematical proofs and definitions are supplemented with intuitive explanations and figures to make them easier to follow. A blend of mathematics and examples from materials science and engineering is designed to teach a mixed audience of mathematical and non-mathematical students.

Harmonic Analysis and Partial Differential Equations

Harmonic Analysis and Partial Differential Equations PDF Author: Anatoly Golberg
Publisher: Springer Nature
ISBN: 3031254244
Category : Mathematics
Languages : en
Pages : 319

Get Book

Book Description
Over the course of his distinguished career, Vladimir Maz'ya has made a number of groundbreaking contributions to numerous areas of mathematics, including partial differential equations, function theory, and harmonic analysis. The chapters in this volume - compiled on the occasion of his 80th birthday - are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.

Recent Trends in Operator Theory and Partial Differential Equations

Recent Trends in Operator Theory and Partial Differential Equations PDF Author: Vladimir Maz'ya
Publisher: Birkhäuser
ISBN: 3319470795
Category : Mathematics
Languages : en
Pages : 313

Get Book

Book Description
This volume is dedicated to the eminent Georgian mathematician Roland Duduchava on the occasion of his 70th birthday. It presents recent results on Toeplitz, Wiener-Hopf, and pseudodifferential operators, boundary value problems, operator theory, approximation theory, and reflects the broad spectrum of Roland Duduchava's research. The book is addressed to a wide audience of pure and applied mathematicians.

Integral Methods in Science and Engineering

Integral Methods in Science and Engineering PDF Author: Christian Constanda
Publisher: Birkhäuser
ISBN: 3319167278
Category : Mathematics
Languages : en
Pages : 717

Get Book

Book Description
This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Thirteenth International Conference on Integral Methods in Science and Engineering, held July 21–25, 2014, in Karlsruhe, Germany. A broad range of topics is addressed, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches. This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.

A Panorama of Mathematics: Pure and Applied

A Panorama of Mathematics: Pure and Applied PDF Author: Carlos M. da Fonseca
Publisher: American Mathematical Soc.
ISBN: 1470416689
Category : Mathematics
Languages : en
Pages : 279

Get Book

Book Description
This volume contains the proceedings of the Conference on Mathematics and its Applications-2014, held from November 14-17, 2014, at Kuwait University, Safat, Kuwait. Papers contained in this volume cover various topics in pure and applied mathematics ranging from an introductory study of quotients and homomorphisms of C-systems, also known as contextual pre-categories, to the most important consequences of the so-called Fokas method. Also covered are multidisciplinary topics such as new structural and spectral matricial results, acousto-electromagnetic tomography method, a recent hybrid imaging technique, some numerical aspects of sonic-boom minimization, PDE eigenvalue problems, von Neumann entropy in graph theory, the relative entropy method for hyperbolic systems, conductances on grids, inverse problems in magnetohydrodynamics, location and size estimation of small rigid bodies using elastic far-fields, and the space-time fractional Schrödinger equation, just to cite a few. Papers contained in this volume cover various topics in pure and applied mathematics ranging from an introductory study of quotients and homomorphisms of C-systems, also known as contextual pre-categories, to the most important consequences of the so-called Fokas method. Also covered are multidisciplinary topics such as new structural and spectral matricial results, acousto-electromagnetic tomography method, a recent hybrid imaging technique, some numerical aspects of sonic-boom minimization, PDE eigenvalue problems, von Neumann entropy in graph theory, the relative entropy method for hyperbolic systems, conductances on grids, inverse problems in magnetohydrodynamics, location and size estimation of small rigid bodies using elastic far-fields, and the space-time fractional Schrödinger equation, just to cite a few. - See more at: http://s350148651-preview.tizrapublisher.com/conm-658/#sthash.74nRhV3y.dpufThis volume contains the proceedings of the Conference on Mathematics and its Applications–2014, held from November 14–17, 2014, at Kuwait University, Safat, Kuwait. - See more at: http://s350148651-preview.tizrapublisher.com/conm-658/#sthash.74nRhV3y.dpuf

Flowing Matter

Flowing Matter PDF Author: Federico Toschi
Publisher: Springer Nature
ISBN: 3030233707
Category : Science
Languages : en
Pages : 309

Get Book

Book Description
This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena. Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents. Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter. This book is the legacy of the COST Action MP1305 “Flowing Matter”.