Author: Pradip Debnath
Publisher: Springer Nature
ISBN: 9811906688
Category : Mathematics
Languages : en
Pages : 358
Book Description
This book collects chapters on fixed-point theory and fractional calculus and their applications in science and engineering. It discusses state-of-the-art developments in these two areas through original new contributions from scientists across the world. It contains several useful tools and techniques to develop their skills and expertise in fixed-point theory and fractional calculus. New research directions are also indicated in chapters. This book is meant for graduate students and researchers willing to expand their knowledge in these areas. The minimum prerequisite for readers is the graduate-level knowledge of analysis, topology and functional analysis.
Fixed Point Theory and Fractional Calculus
Author: Pradip Debnath
Publisher: Springer Nature
ISBN: 9811906688
Category : Mathematics
Languages : en
Pages : 358
Book Description
This book collects chapters on fixed-point theory and fractional calculus and their applications in science and engineering. It discusses state-of-the-art developments in these two areas through original new contributions from scientists across the world. It contains several useful tools and techniques to develop their skills and expertise in fixed-point theory and fractional calculus. New research directions are also indicated in chapters. This book is meant for graduate students and researchers willing to expand their knowledge in these areas. The minimum prerequisite for readers is the graduate-level knowledge of analysis, topology and functional analysis.
Publisher: Springer Nature
ISBN: 9811906688
Category : Mathematics
Languages : en
Pages : 358
Book Description
This book collects chapters on fixed-point theory and fractional calculus and their applications in science and engineering. It discusses state-of-the-art developments in these two areas through original new contributions from scientists across the world. It contains several useful tools and techniques to develop their skills and expertise in fixed-point theory and fractional calculus. New research directions are also indicated in chapters. This book is meant for graduate students and researchers willing to expand their knowledge in these areas. The minimum prerequisite for readers is the graduate-level knowledge of analysis, topology and functional analysis.
Fractional Differential Equations
Author: Anatoly Kochubei
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110571668
Category : Mathematics
Languages : en
Pages : 528
Book Description
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110571668
Category : Mathematics
Languages : en
Pages : 528
Book Description
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.
Fixed Point Theory and Applications
Author: Ravi P. Agarwal
Publisher: Cambridge University Press
ISBN: 1139433792
Category : Mathematics
Languages : en
Pages : 182
Book Description
This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.
Publisher: Cambridge University Press
ISBN: 1139433792
Category : Mathematics
Languages : en
Pages : 182
Book Description
This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.
Theory and Applications of Fractional Differential Equations
Author: A.A. Kilbas
Publisher: Elsevier
ISBN: 9780444518323
Category : Mathematics
Languages : en
Pages : 550
Book Description
This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.
Publisher: Elsevier
ISBN: 9780444518323
Category : Mathematics
Languages : en
Pages : 550
Book Description
This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.
Impulsive Differential Inclusions
Author: John R. Graef
Publisher: Walter de Gruyter
ISBN: 3110295318
Category : Mathematics
Languages : en
Pages : 412
Book Description
Differential equations with impulses arise as models of many evolving processes that are subject to abrupt changes, such as shocks, harvesting, and natural disasters. These phenomena involve short-term perturbations from continuous and smooth dynamics, whose duration is negligible in comparison with the duration of an entire evolution. In models involving such perturbations, it is natural to assume these perturbations act instantaneously or in the form of impulses. As a consequence, impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, and so forth. There are also many different studies in biology and medicine for which impulsive differential equations provide good models. During the last 10 years, the authors have been responsible for extensive contributions to the literature on impulsive differential inclusions via fixed point methods. This book is motivated by that research as the authors endeavor to bring under one cover much of those results along with results by other researchers either affecting or affected by the authors' work. The questions of existence and stability of solutions for different classes of initial value problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems. In addition, since differential equations can be viewed as special cases of differential inclusions, significant attention is also given to relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simpler beginnings as well.
Publisher: Walter de Gruyter
ISBN: 3110295318
Category : Mathematics
Languages : en
Pages : 412
Book Description
Differential equations with impulses arise as models of many evolving processes that are subject to abrupt changes, such as shocks, harvesting, and natural disasters. These phenomena involve short-term perturbations from continuous and smooth dynamics, whose duration is negligible in comparison with the duration of an entire evolution. In models involving such perturbations, it is natural to assume these perturbations act instantaneously or in the form of impulses. As a consequence, impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, and so forth. There are also many different studies in biology and medicine for which impulsive differential equations provide good models. During the last 10 years, the authors have been responsible for extensive contributions to the literature on impulsive differential inclusions via fixed point methods. This book is motivated by that research as the authors endeavor to bring under one cover much of those results along with results by other researchers either affecting or affected by the authors' work. The questions of existence and stability of solutions for different classes of initial value problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems. In addition, since differential equations can be viewed as special cases of differential inclusions, significant attention is also given to relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simpler beginnings as well.
Advances in Functional Analysis and Fixed-Point Theory
Author: Bipan Hazarika
Publisher: Springer Nature
ISBN: 9819992079
Category :
Languages : en
Pages : 319
Book Description
Publisher: Springer Nature
ISBN: 9819992079
Category :
Languages : en
Pages : 319
Book Description
Dynamical Systems
Author: Mahmut Reyhanoglu
Publisher: BoD – Books on Demand
ISBN: 9535130153
Category : Mathematics
Languages : en
Pages : 276
Book Description
There has been a considerable progress made during the recent past on mathematical techniques for studying dynamical systems that arise in science and engineering. This progress has been, to a large extent, due to our increasing ability to mathematically model physical processes and to analyze and solve them, both analytically and numerically. With its eleven chapters, this book brings together important contributions from renowned international researchers to provide an excellent survey of recent advances in dynamical systems theory and applications. The first section consists of seven chapters that focus on analytical techniques, while the next section is composed of four chapters that center on computational techniques.
Publisher: BoD – Books on Demand
ISBN: 9535130153
Category : Mathematics
Languages : en
Pages : 276
Book Description
There has been a considerable progress made during the recent past on mathematical techniques for studying dynamical systems that arise in science and engineering. This progress has been, to a large extent, due to our increasing ability to mathematically model physical processes and to analyze and solve them, both analytically and numerically. With its eleven chapters, this book brings together important contributions from renowned international researchers to provide an excellent survey of recent advances in dynamical systems theory and applications. The first section consists of seven chapters that focus on analytical techniques, while the next section is composed of four chapters that center on computational techniques.
The Analysis of Fractional Differential Equations
Author: Kai Diethelm
Publisher: Springer
ISBN: 3642145744
Category : Mathematics
Languages : en
Pages : 251
Book Description
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.
Publisher: Springer
ISBN: 3642145744
Category : Mathematics
Languages : en
Pages : 251
Book Description
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.
Fixed Point Theory in Metric Spaces
Author: Praveen Agarwal
Publisher: Springer
ISBN: 9811329133
Category : Mathematics
Languages : en
Pages : 173
Book Description
This book provides a detailed study of recent results in metric fixed point theory and presents several applications in nonlinear analysis, including matrix equations, integral equations and polynomial approximations. Each chapter is accompanied by basic definitions, mathematical preliminaries and proof of the main results. Divided into ten chapters, it discusses topics such as the Banach contraction principle and its converse; Ran-Reurings fixed point theorem with applications; the existence of fixed points for the class of α-ψ contractive mappings with applications to quadratic integral equations; recent results on fixed point theory for cyclic mappings with applications to the study of functional equations; the generalization of the Banach fixed point theorem on Branciari metric spaces; the existence of fixed points for a certain class of mappings satisfying an implicit contraction; fixed point results for a class of mappings satisfying a certain contraction involving extended simulation functions; the solvability of a coupled fixed point problem under a finite number of equality constraints; the concept of generalized metric spaces, for which the authors extend some well-known fixed point results; and a new fixed point theorem that helps in establishing a Kelisky–Rivlin type result for q-Bernstein polynomials and modified q-Bernstein polynomials. The book is a valuable resource for a wide audience, including graduate students and researchers.
Publisher: Springer
ISBN: 9811329133
Category : Mathematics
Languages : en
Pages : 173
Book Description
This book provides a detailed study of recent results in metric fixed point theory and presents several applications in nonlinear analysis, including matrix equations, integral equations and polynomial approximations. Each chapter is accompanied by basic definitions, mathematical preliminaries and proof of the main results. Divided into ten chapters, it discusses topics such as the Banach contraction principle and its converse; Ran-Reurings fixed point theorem with applications; the existence of fixed points for the class of α-ψ contractive mappings with applications to quadratic integral equations; recent results on fixed point theory for cyclic mappings with applications to the study of functional equations; the generalization of the Banach fixed point theorem on Branciari metric spaces; the existence of fixed points for a certain class of mappings satisfying an implicit contraction; fixed point results for a class of mappings satisfying a certain contraction involving extended simulation functions; the solvability of a coupled fixed point problem under a finite number of equality constraints; the concept of generalized metric spaces, for which the authors extend some well-known fixed point results; and a new fixed point theorem that helps in establishing a Kelisky–Rivlin type result for q-Bernstein polynomials and modified q-Bernstein polynomials. The book is a valuable resource for a wide audience, including graduate students and researchers.
Fractional Derivatives with Mittag-Leffler Kernel
Author: José Francisco Gómez
Publisher: Springer
ISBN: 303011662X
Category : Technology & Engineering
Languages : en
Pages : 339
Book Description
This book offers a timely overview of fractional calculus applications, with a special emphasis on fractional derivatives with Mittag-Leffler kernel. The different contributions, written by applied mathematicians, physicists and engineers, offers a snapshot of recent research in the field, highlighting the current methodological frameworks together with applications in different fields of science and engineering, such as chemistry, mechanics, epidemiology and more. It is intended as a timely guide and source of inspiration for graduate students and researchers in the above-mentioned areas.
Publisher: Springer
ISBN: 303011662X
Category : Technology & Engineering
Languages : en
Pages : 339
Book Description
This book offers a timely overview of fractional calculus applications, with a special emphasis on fractional derivatives with Mittag-Leffler kernel. The different contributions, written by applied mathematicians, physicists and engineers, offers a snapshot of recent research in the field, highlighting the current methodological frameworks together with applications in different fields of science and engineering, such as chemistry, mechanics, epidemiology and more. It is intended as a timely guide and source of inspiration for graduate students and researchers in the above-mentioned areas.