Author: Margaret Ackerman
Publisher: Academic Press
ISBN: 0123948185
Category : Medical
Languages : en
Pages : 376
Book Description
Antibody Fc is the first single text to synthesize the literature on the mechanisms underlying the dramatic variability of antibodies to influence the immune response. The book demonstrates the importance of the Fc domain, including protective mechanisms, effector cell types, genetic data, and variability in Fc domain function. This volume is a critical single-source reference for researchers in vaccine discovery, immunologists, microbiologists, oncologists and protein engineers as well as graduate students in immunology and vaccinology. Antibodies represent the correlate of protection for numerous vaccines and are the most rapidly growing class of drugs, with applications ranging from cancer and infectious disease to autoimmunity. Researchers have long understood the variable domain of antibodies, which are responsible for antigen recognition, and can provide protection by blocking the function of their target antigen. However, recent developments in our understanding of the protection mediated by antibodies have highlighted the critical nature of the antibody constant, or Fc domain, in the biological activity of antibodies. The Fc domain allows antibodies to link the adaptive and innate immune systems, providing specificity to a wide range of innate effector cells. In addition, they provide a feedback loop to regulate the character of the immune response via interactions with B cells and antigen-presenting cells. - Clarifies the different mechanisms of IgG activity at the level of the different model systems used, including human genetic, mouse, and in vitro - Covers the role of antibodies in cancer, infectious disease, and autoimmunity and in the setting of monoclonal antibody therapy as well as naturally raised antibodies - Color illustrations enhance explanations of the immune system
Antibody Fc
Author: Margaret Ackerman
Publisher: Academic Press
ISBN: 0123948185
Category : Medical
Languages : en
Pages : 376
Book Description
Antibody Fc is the first single text to synthesize the literature on the mechanisms underlying the dramatic variability of antibodies to influence the immune response. The book demonstrates the importance of the Fc domain, including protective mechanisms, effector cell types, genetic data, and variability in Fc domain function. This volume is a critical single-source reference for researchers in vaccine discovery, immunologists, microbiologists, oncologists and protein engineers as well as graduate students in immunology and vaccinology. Antibodies represent the correlate of protection for numerous vaccines and are the most rapidly growing class of drugs, with applications ranging from cancer and infectious disease to autoimmunity. Researchers have long understood the variable domain of antibodies, which are responsible for antigen recognition, and can provide protection by blocking the function of their target antigen. However, recent developments in our understanding of the protection mediated by antibodies have highlighted the critical nature of the antibody constant, or Fc domain, in the biological activity of antibodies. The Fc domain allows antibodies to link the adaptive and innate immune systems, providing specificity to a wide range of innate effector cells. In addition, they provide a feedback loop to regulate the character of the immune response via interactions with B cells and antigen-presenting cells. - Clarifies the different mechanisms of IgG activity at the level of the different model systems used, including human genetic, mouse, and in vitro - Covers the role of antibodies in cancer, infectious disease, and autoimmunity and in the setting of monoclonal antibody therapy as well as naturally raised antibodies - Color illustrations enhance explanations of the immune system
Publisher: Academic Press
ISBN: 0123948185
Category : Medical
Languages : en
Pages : 376
Book Description
Antibody Fc is the first single text to synthesize the literature on the mechanisms underlying the dramatic variability of antibodies to influence the immune response. The book demonstrates the importance of the Fc domain, including protective mechanisms, effector cell types, genetic data, and variability in Fc domain function. This volume is a critical single-source reference for researchers in vaccine discovery, immunologists, microbiologists, oncologists and protein engineers as well as graduate students in immunology and vaccinology. Antibodies represent the correlate of protection for numerous vaccines and are the most rapidly growing class of drugs, with applications ranging from cancer and infectious disease to autoimmunity. Researchers have long understood the variable domain of antibodies, which are responsible for antigen recognition, and can provide protection by blocking the function of their target antigen. However, recent developments in our understanding of the protection mediated by antibodies have highlighted the critical nature of the antibody constant, or Fc domain, in the biological activity of antibodies. The Fc domain allows antibodies to link the adaptive and innate immune systems, providing specificity to a wide range of innate effector cells. In addition, they provide a feedback loop to regulate the character of the immune response via interactions with B cells and antigen-presenting cells. - Clarifies the different mechanisms of IgG activity at the level of the different model systems used, including human genetic, mouse, and in vitro - Covers the role of antibodies in cancer, infectious disease, and autoimmunity and in the setting of monoclonal antibody therapy as well as naturally raised antibodies - Color illustrations enhance explanations of the immune system
Fc-Mediated Antibody Functions and Fc-Receptor Polymorphism Volume II
Author: Guido Ferrari
Publisher: Frontiers Media SA
ISBN: 2832524303
Category : Medical
Languages : en
Pages : 163
Book Description
Publisher: Frontiers Media SA
ISBN: 2832524303
Category : Medical
Languages : en
Pages : 163
Book Description
Fc-Mediated Antibody Functions and Fc-Receptor Polymorphism
Author: Guido Ferrari
Publisher: Frontiers Media SA
ISBN: 2889638901
Category :
Languages : en
Pages : 273
Book Description
Publisher: Frontiers Media SA
ISBN: 2889638901
Category :
Languages : en
Pages : 273
Book Description
Therapeutic Antibody Engineering
Author: William R Strohl
Publisher: Elsevier
ISBN: 1908818093
Category : Medical
Languages : en
Pages : 697
Book Description
The field of antibody engineering has become a vital and integral part of making new, improved next generation therapeutic monoclonal antibodies, of which there are currently more than 300 in clinical trials across several therapeutic areas. Therapeutic antibody engineering examines all aspects of engineering monoclonal antibodies and analyses the effect that various genetic engineering approaches will have on future candidates. Chapters in the first part of the book provide an introduction to monoclonal antibodies, their discovery and development and the fundamental technologies used in their production. Following chapters cover a number of specific issues relating to different aspects of antibody engineering, including variable chain engineering, targets and mechanisms of action, classes of antibody and the use of antibody fragments, among many other topics. The last part of the book examines development issues, the interaction of human IgGs with non-human systems, and cell line development, before a conclusion looking at future issues affecting the field of therapeutic antibody engineering. - Goes beyond the standard engineering issues covered by most books and delves into structure-function relationships - Integration of knowledge across all areas of antibody engineering, development, and marketing - Discusses how current and future genetic engineering of cell lines will pave the way for much higher productivity
Publisher: Elsevier
ISBN: 1908818093
Category : Medical
Languages : en
Pages : 697
Book Description
The field of antibody engineering has become a vital and integral part of making new, improved next generation therapeutic monoclonal antibodies, of which there are currently more than 300 in clinical trials across several therapeutic areas. Therapeutic antibody engineering examines all aspects of engineering monoclonal antibodies and analyses the effect that various genetic engineering approaches will have on future candidates. Chapters in the first part of the book provide an introduction to monoclonal antibodies, their discovery and development and the fundamental technologies used in their production. Following chapters cover a number of specific issues relating to different aspects of antibody engineering, including variable chain engineering, targets and mechanisms of action, classes of antibody and the use of antibody fragments, among many other topics. The last part of the book examines development issues, the interaction of human IgGs with non-human systems, and cell line development, before a conclusion looking at future issues affecting the field of therapeutic antibody engineering. - Goes beyond the standard engineering issues covered by most books and delves into structure-function relationships - Integration of knowledge across all areas of antibody engineering, development, and marketing - Discusses how current and future genetic engineering of cell lines will pave the way for much higher productivity
Antibody Glycosylation
Author: Marija Pezer
Publisher: Springer Nature
ISBN: 3030769127
Category : Medical
Languages : en
Pages : 588
Book Description
This book summarizes recent advances in antibody glycosylation research. Covering major topics relevant for immunoglobulin glycosylation - analytical methods, biosynthesis and regulation, modulation of effector functions - it provides new perspectives for research and development in the field of therapeutic antibodies, biomarkers, vaccinations, and immunotherapy. Glycans attached to both variable and constant regions of antibodies are known to affect the antibody conformation, stability, and effector functions. Although it focuses on immunoglobulin G (IgG), the most explored antibody in this context, and unravels the natural phenomena resulting from the mixture of IgG glycovariants present in the human body, the book also discusses other classes of human immunoglobulins, as well as immunoglobulins produced in other species and production systems. Further, it reviews the glycoanalytical methods applied to antibodies and addresses a range of less commonly explored topics, such as automatization and bioinformatics aspects of high-throughput antibody glycosylation analysis. Lastly, the book highlights application areas ranging from the ones already benefitting from antibody glycoengineering (such as monoclonal antibody production), to those still in the research stages (such as exploration of antibody glycosylation as a clinical or biological age biomarker), and the potential use of antibody glycosylation in the optimization of vaccine production and immunization protocols. Summarizing the current knowledge on the broad topic of antibody glycosylation and its therapeutic and biomarker potential, this book will appeal to a wide biomedical readership in academia and industry alike. Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Publisher: Springer Nature
ISBN: 3030769127
Category : Medical
Languages : en
Pages : 588
Book Description
This book summarizes recent advances in antibody glycosylation research. Covering major topics relevant for immunoglobulin glycosylation - analytical methods, biosynthesis and regulation, modulation of effector functions - it provides new perspectives for research and development in the field of therapeutic antibodies, biomarkers, vaccinations, and immunotherapy. Glycans attached to both variable and constant regions of antibodies are known to affect the antibody conformation, stability, and effector functions. Although it focuses on immunoglobulin G (IgG), the most explored antibody in this context, and unravels the natural phenomena resulting from the mixture of IgG glycovariants present in the human body, the book also discusses other classes of human immunoglobulins, as well as immunoglobulins produced in other species and production systems. Further, it reviews the glycoanalytical methods applied to antibodies and addresses a range of less commonly explored topics, such as automatization and bioinformatics aspects of high-throughput antibody glycosylation analysis. Lastly, the book highlights application areas ranging from the ones already benefitting from antibody glycoengineering (such as monoclonal antibody production), to those still in the research stages (such as exploration of antibody glycosylation as a clinical or biological age biomarker), and the potential use of antibody glycosylation in the optimization of vaccine production and immunization protocols. Summarizing the current knowledge on the broad topic of antibody glycosylation and its therapeutic and biomarker potential, this book will appeal to a wide biomedical readership in academia and industry alike. Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Malaria Control and Elimination
Author: Frédéric Ariey
Publisher: Methods in Molecular Biology
ISBN: 9781493995523
Category : Medical
Languages : en
Pages : 341
Book Description
Publisher: Methods in Molecular Biology
ISBN: 9781493995523
Category : Medical
Languages : en
Pages : 341
Book Description
Therapeutic Fc-Fusion Proteins
Author: Steven M. Chamow
Publisher: John Wiley & Sons
ISBN: 3527675280
Category : Science
Languages : en
Pages : 345
Book Description
Edited by three pioneers in the field, each with longstanding experience in the biotech industry, and a skilled scientific writer, this is the first book to cover every step in the development and production of immunoglobulin Fc-fusion proteins as therapeutics for human disease: from choosing the right molecular design, to pre-clinical characterization of the purified product, through to batch optimization and quality control for large-scale cGMP production. The whole of the second part is devoted to case studies of Fc-fusion proteins that are now commercially successful products. In this section, the authors, several of whom were personally involved in clinical development of the products themselves, detail the product?s background and give insight into issues that were faced and how these issues were overcome during clinical development. This section also includes a chapter on promising new developments for the future. An invaluable resource for professionals already working on Fc-fusion proteins and an excellent and thorough introduction for physicians, researchers, and students entering the field.
Publisher: John Wiley & Sons
ISBN: 3527675280
Category : Science
Languages : en
Pages : 345
Book Description
Edited by three pioneers in the field, each with longstanding experience in the biotech industry, and a skilled scientific writer, this is the first book to cover every step in the development and production of immunoglobulin Fc-fusion proteins as therapeutics for human disease: from choosing the right molecular design, to pre-clinical characterization of the purified product, through to batch optimization and quality control for large-scale cGMP production. The whole of the second part is devoted to case studies of Fc-fusion proteins that are now commercially successful products. In this section, the authors, several of whom were personally involved in clinical development of the products themselves, detail the product?s background and give insight into issues that were faced and how these issues were overcome during clinical development. This section also includes a chapter on promising new developments for the future. An invaluable resource for professionals already working on Fc-fusion proteins and an excellent and thorough introduction for physicians, researchers, and students entering the field.
Biosimilars of Monoclonal Antibodies
Author: Cheng Liu
Publisher: John Wiley & Sons
ISBN: 1118940628
Category : Medical
Languages : en
Pages : 723
Book Description
Addressing a significant need by describing the science and process involved to develop biosimilars of monoclonal antibody (mAb) drugs, this book covers all aspects of biosimilar development: preclinical, clinical, regulatory, manufacturing. • Guides readers through the complex landscape involved with developing biosimilar versions of monoclonal antibody (mAb) drugs • Features flow charts, tables, and figures that clearly illustrate processes and makes the book comprehensible and accessible • Includes a review of FDA-approved mAb drugs as a quick reference to facts and useful information • Examines new technologies and strategies for improving biosimilar mAbs
Publisher: John Wiley & Sons
ISBN: 1118940628
Category : Medical
Languages : en
Pages : 723
Book Description
Addressing a significant need by describing the science and process involved to develop biosimilars of monoclonal antibody (mAb) drugs, this book covers all aspects of biosimilar development: preclinical, clinical, regulatory, manufacturing. • Guides readers through the complex landscape involved with developing biosimilar versions of monoclonal antibody (mAb) drugs • Features flow charts, tables, and figures that clearly illustrate processes and makes the book comprehensible and accessible • Includes a review of FDA-approved mAb drugs as a quick reference to facts and useful information • Examines new technologies and strategies for improving biosimilar mAbs
Structure and Function of Antibodies
Author: Roy Jefferis
Publisher: MDPI
ISBN: 3039438972
Category : Science
Languages : en
Pages : 440
Book Description
This book provides a detailed description of all kinds of therapeutic antibodies including IgGs, IgAs, IgEs, and IgMs, bispecific antibodies, chimeric antigen receptor antibodies, and antibody fragments. Details about how each of these antibodies interact with their ligands, the immune system, and their targets are provided. Additionally, this book delves into the details of antibody, Fc, and variable chain structures, and how subtle changes in structure, charge, flexibility, post-translational modification, and the ability to bind to natural antibody ligands can result in a significant impact on antibody activity and functionality. Finally, the book explains the critical quality attributes of modern therapeutic antibodies and how to ensure that antibodies entering development have the best possible chance of success.
Publisher: MDPI
ISBN: 3039438972
Category : Science
Languages : en
Pages : 440
Book Description
This book provides a detailed description of all kinds of therapeutic antibodies including IgGs, IgAs, IgEs, and IgMs, bispecific antibodies, chimeric antigen receptor antibodies, and antibody fragments. Details about how each of these antibodies interact with their ligands, the immune system, and their targets are provided. Additionally, this book delves into the details of antibody, Fc, and variable chain structures, and how subtle changes in structure, charge, flexibility, post-translational modification, and the ability to bind to natural antibody ligands can result in a significant impact on antibody activity and functionality. Finally, the book explains the critical quality attributes of modern therapeutic antibodies and how to ensure that antibodies entering development have the best possible chance of success.
Antibody Fc
Author: Victor Raúl Gómez Román
Publisher: Elsevier Inc. Chapters
ISBN: 0128060220
Category : Medical
Languages : en
Pages : 53
Book Description
Antibody-dependent cellular cytotoxicity (ADCC), also called antibody-dependent cell-mediated cytotoxicity, is an immune mechanism through which Fc receptor-bearing effector cells can recognize and kill antibody-coated target cells expressing tumor- or pathogen-derived antigens on their surface. Numerous associations between ADCC activity, Fc receptor polymorphisms, and clinical outcomes have been observed in both the settings of vaccination and monoclonal antibody therapy. Here, the effector cells and receptors involved in ADCC are introduced, followed by a description of the four main stages and mechanisms leading to the antibody-dependent effector-mediated killing of the target cell: (1) Recognition of the target cell and Fc receptor cross-linking on the surface of the effector cell; (2) phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) by cellular src kinases within the effector cell; (3) triggering of three main downstream signaling pathways in the effector cell, resulting in cytotoxic granule polarization and release; and (4) killing of the target cell via the predominant perforin/granzyme cell death pathway. Further, a summary and a discussion are presented in relation to case studies in which in vitro ADCC activity correlates with protection against infectious diseases and outcomes in monoclonal antibody therapy of cancer in vivo . The means by which these mechanisms are currently being exploited by recombinant antibody engineering, and a path toward a future in which designed vaccines take advantage of variant ADCC activity are also discussed. Throughout the chapter, attention is drawn to the fact that, while the majority of ADCC studies have been based on research using peripheral blood mononuclear cells in which NK cells have been assumed to be the main effectors, questions remain unanswered about ADCC mediated by non-NK cell populations in peripheral blood and in mucosal compartments.
Publisher: Elsevier Inc. Chapters
ISBN: 0128060220
Category : Medical
Languages : en
Pages : 53
Book Description
Antibody-dependent cellular cytotoxicity (ADCC), also called antibody-dependent cell-mediated cytotoxicity, is an immune mechanism through which Fc receptor-bearing effector cells can recognize and kill antibody-coated target cells expressing tumor- or pathogen-derived antigens on their surface. Numerous associations between ADCC activity, Fc receptor polymorphisms, and clinical outcomes have been observed in both the settings of vaccination and monoclonal antibody therapy. Here, the effector cells and receptors involved in ADCC are introduced, followed by a description of the four main stages and mechanisms leading to the antibody-dependent effector-mediated killing of the target cell: (1) Recognition of the target cell and Fc receptor cross-linking on the surface of the effector cell; (2) phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) by cellular src kinases within the effector cell; (3) triggering of three main downstream signaling pathways in the effector cell, resulting in cytotoxic granule polarization and release; and (4) killing of the target cell via the predominant perforin/granzyme cell death pathway. Further, a summary and a discussion are presented in relation to case studies in which in vitro ADCC activity correlates with protection against infectious diseases and outcomes in monoclonal antibody therapy of cancer in vivo . The means by which these mechanisms are currently being exploited by recombinant antibody engineering, and a path toward a future in which designed vaccines take advantage of variant ADCC activity are also discussed. Throughout the chapter, attention is drawn to the fact that, while the majority of ADCC studies have been based on research using peripheral blood mononuclear cells in which NK cells have been assumed to be the main effectors, questions remain unanswered about ADCC mediated by non-NK cell populations in peripheral blood and in mucosal compartments.