Enhancement of Pool Boiling Heat Transfer with Electrohydrodynamics and Its Fundamental Study

Enhancement of Pool Boiling Heat Transfer with Electrohydrodynamics and Its Fundamental Study PDF Author: Sri Laxmi Priya Raghupathi
Publisher:
ISBN:
Category :
Languages : en
Pages : 194

Get Book Here

Book Description

Enhancement of Pool Boiling Heat Transfer with Electrohydrodynamics and Its Fundamental Study

Enhancement of Pool Boiling Heat Transfer with Electrohydrodynamics and Its Fundamental Study PDF Author: Sri Laxmi Priya Raghupathi
Publisher:
ISBN:
Category :
Languages : en
Pages : 194

Get Book Here

Book Description


EHD-enhanced Pool Boiling Heat Transfer

EHD-enhanced Pool Boiling Heat Transfer PDF Author: Majid Ali Faani Tabrizi Nezhaad
Publisher:
ISBN:
Category : Electrohydrodynamics
Languages : en
Pages : 492

Get Book Here

Book Description


Electro-hydro-dynamics Enhancement of Multiphase Heat Transfer in Pool Boiling

Electro-hydro-dynamics Enhancement of Multiphase Heat Transfer in Pool Boiling PDF Author: Thai H. Nguyen
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 216

Get Book Here

Book Description


Advances in Heat Transfer

Advances in Heat Transfer PDF Author:
Publisher: Academic Press
ISBN: 0080575870
Category : Technology & Engineering
Languages : en
Pages : 543

Get Book Here

Book Description
Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than is allowable in either journals or texts.

The Effect of Electrode Geometry on the Electrohydrodynamic Enhancement of Pool Boiling Heat Transfer of R123/oil Mixture

The Effect of Electrode Geometry on the Electrohydrodynamic Enhancement of Pool Boiling Heat Transfer of R123/oil Mixture PDF Author: Riyaz Amir Papar
Publisher:
ISBN:
Category :
Languages : en
Pages : 194

Get Book Here

Book Description


Fundamental Study of Electrohydrodynamically Enhanced Convective and Nucleate Boiling Heat Transfer

Fundamental Study of Electrohydrodynamically Enhanced Convective and Nucleate Boiling Heat Transfer PDF Author: James E. Bryan
Publisher:
ISBN:
Category :
Languages : en
Pages : 528

Get Book Here

Book Description


High-pressure Pool-boiling Heat Transfer Enhancement and Mechanism on Engineered Surfaces

High-pressure Pool-boiling Heat Transfer Enhancement and Mechanism on Engineered Surfaces PDF Author: Smreeti Dahariya
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Boiling has received considerable attention in the technology advancement of electronics cooling for high-performance computing applications. Two-phase cooling has an advantage over a single-phase cooling in the high heat removal rate with a small thermal gradient due to the latent heat of vaporization. Many surface modifications have been done in the past including surface roughness, mixed wettability and, porous wick copper play a crucial role in the liquid-vapor phase change heat transfer. However, the mechanisms of high-pressure pool-boiling heat transfer enhancement due to surface modifications has not been well studied or understood. The properties of water, such as the latent heat of vaporization, surface tension, the difference in specific volume of liquid and vapor, decrease at high-pressure. High-pressure pool-boiling heat transfer enhancement is studied fundamentally on various engineered surfaces. The boiling tests are performed at a maximum pressure of 90 psig (620.5 kPa) and then compared to results at 0 psig (0 kPa). The results indicate that the pressure influences the boiling performance through changes in bubble dynamics. The bubble departure diameter, bubble departure frequency, and the active nucleation sites change with pressure. The pool-boiling heat transfer enhancement of a Teflon© coated surface is also experimentally tested, using water as the working fluid. The boiling results are compared with a plain surface at two different pressures, 30 and 45 psig. The maximum heat transfer enhancement is found at the low heat fluxes. At high heat fluxes, a negligible effect is observed in HTC. The primary reasons for the HTC enhancement at low heat fluxes are active nucleation sites at low wall superheat and bubble departure size. The Teflon© coated surface promotes nucleation because of the lower surface energy requirement. The boiling results are also obtained for wick surfaces. The wick surfaces are fabricated using a sintering process. The boiling results are compared with a plain surface. The reasons for enhancements in the pool-boiling performance are primarily due to increased bubble generation, higher bubble release frequency, reduced thermal-hydraulic length modulation, and enhanced thermal conductivity due to the sintered wick layer. The analysis suggests that the Rayleigh-critical wavelength decreases by 4.67 % of varying pressure, which may cause the bubble pinning between the gaps of sintered particles and avoids the bubble coalescence. Changes in the pitch distance indicate that a liquid-vapor phase separation happens at the solid/liquid interface, which impacts the heat-transfer performance significantly. Similarly, the role of the high-pressure over the wicking layer is further analyzed and studied. It is found that the critical flow length, [lambda]u reduces by three times with 200 [mu]m particles. The results suggest that the porous wick layer provides a capillary-assist to liquid flow effect, and delays the surface dry out. The surface modification and the pressure amplify the boiling heat transfer performance. All these reasons may contribute to the CHF, and HTC enhancement in the wicking layer at high-pressure.

Enhancement of Pool Boiling Heat Transfer in Confined Space

Enhancement of Pool Boiling Heat Transfer in Confined Space PDF Author: Chia-Hsiang Hsu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Pool boiling is an effective method used in many technical applications for a long time. Its highly efficient heat transfer performance results from not only the convection effect but also the phase change process in pool boiling. Pool boiling enhancement has been studied in the past decade. However, the mechanisms of pool boiling has not yet been fully understood because of the many parameters that affect its behavior including the latent heat of vaporization, nucleation density, bubble and fluid motion, interaction at the interface, and the physical properties of surface. Among the current studies, bubble departure rate is viewed as one of the dominant factors that affect heat transfer. This research considers the effect of bubble confinement on pool boiling. In the study, confinement was achieved by placing a flat plate over heated surface. The flat plate has a hole in the middle, and there is a gap between the flat plate and the heater. The diameters of hole are 2 mm, 3 mm, and 4 mm; the gap distances are 2.3 mm, 3.6 mm, and 5 mm. The heater consists of an indium-tin-oxide layer deposited on a silicon wafer. An IR camera and high speed cameras are used to acquire the surface temperature distribution and bubble image. By controlling the plate hole size and the gap distance, the effect of confinement on heat transfer performance can be evaluated. Moreover, heat transfer performance of pool boiling with three-2mm-holes plate was investigated and compared with that of single-2mm-hole plate with the smallest gap size. At the lower heat flux values, heat transfer enhancement in confined space was experimentally observed. Surface temperature can be reduced by 4 °C at most. Results indicate that higher bubble departure rate and coalescence effect might be the dominant factor for improving heat transfer performance in a confined space caused by induced shear flow. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/152843

Enhanced Pool Boiling Heat Transfer by Flow Modulation and Contact Line Augmentation Over Cylindrical Tubes

Enhanced Pool Boiling Heat Transfer by Flow Modulation and Contact Line Augmentation Over Cylindrical Tubes PDF Author: Indranil M. Joshi
Publisher:
ISBN:
Category : Ebullition
Languages : en
Pages : 71

Get Book Here

Book Description
"The miniaturization trend in electronics has spurred the development of efficient thermal management solutions. Single phase techniques are reliable but are limited by large fluid temperature differences and pressure drop. Two phase cooling has very little pressure drop with large heat absorption capacity. Boiling stands out as one of the most effective methods of heat dissipation which utilizes phase change. However, the design of two-phase systems is limited by the critical heat flux condition where a vapor layer prevents the liquid from contacting the heater surface. The current research study is directed towards increasing the CHF and maintaining low wall superheats to design efficient heat removal systems. In this study, different surface modification techniques are studied with an aim to identify various mechanisms that affect the heat transfer. Different surface enhancements in the form of Circumferential rectangular microchannels(CRM) and fin are used over cylindrical surface. Cylindrical tube with outer diameter of 15 mm was used for testing with water as working fluid. Tubular surface with fin attached performed the best yielding the CHF of 115 W/cm2 at wall superheat of 18oC which translated to an enhancement of 76%. The best performance of 110 W/cm2 at 9 oC without reaching CHF was obtained amongst CRM. Different mechanisms were identified by analyzing the results from pool boiling experiments. Area enhancement and contact line substantially affected the heat transfer performance in CRM. Area enhancement increased performance by providing additional area for heat transfer. Contact line region has higher heat flux. Single bubble growing over multiple grooves has increased contact line density which increases heat transfer performance. Increment in CHF was obtained by employing any one of these surface enhancements. High speed imaging enabled to analyze the behavior of bubble after nucleation on the fin surface thus deciphering the flow modulation over the cylindrical surface. Presence of bubble diverter at the bottom surface ensured higher evaporative momentum force towards the cylindrical surface. This displaced nucleating bubble at the bottom away from the fin, enabling liquid to rewet the surface. This allowed the formation of separate liquid vapor pathways which resulted in increased performance."--Abstract.

Electrohydrodynamic Pool Boiling Heat Transfer in Microgravity

Electrohydrodynamic Pool Boiling Heat Transfer in Microgravity PDF Author: Charles Akira Murakami
Publisher:
ISBN:
Category :
Languages : en
Pages : 116

Get Book Here

Book Description