Engine Concept Study for an Advanced Single-Aisle Transport

Engine Concept Study for an Advanced Single-Aisle Transport PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781719491617
Category :
Languages : en
Pages : 94

Get Book Here

Book Description
The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which mission fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. The results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class. Guynn, Mark D. and Berton, Jeffrey J. and Fisher, Kenneth L. and Haller, William J. and Tong, Michael and Thurman, Douglas R. Glenn Research Center; Langley Research Center AIRCRAFT DESIGN; GAS TURBINE ENGINES; TURBOJET ENGINES; NOISE REDUCTION; ENGINE DESIGN; GAS EVOLUTION; BYPASS RATIO; TURBOFANS; PROPULSION

Engine Concept Study for an Advanced Single-Aisle Transport

Engine Concept Study for an Advanced Single-Aisle Transport PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781719491617
Category :
Languages : en
Pages : 94

Get Book Here

Book Description
The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which mission fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. The results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class. Guynn, Mark D. and Berton, Jeffrey J. and Fisher, Kenneth L. and Haller, William J. and Tong, Michael and Thurman, Douglas R. Glenn Research Center; Langley Research Center AIRCRAFT DESIGN; GAS TURBINE ENGINES; TURBOJET ENGINES; NOISE REDUCTION; ENGINE DESIGN; GAS EVOLUTION; BYPASS RATIO; TURBOFANS; PROPULSION

Engine Concept Study for an Advanced Single-Aisle Transport

Engine Concept Study for an Advanced Single-Aisle Transport PDF Author: Mark D. Guynn
Publisher: BiblioGov
ISBN: 9781289233464
Category :
Languages : en
Pages : 100

Get Book Here

Book Description
The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which mission fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. The results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

An Airline Study of Advanced Technology Requirements for Advanced High Speed Commercial Transport Engines. 2: Engine Preliminary Design Assessment

An Airline Study of Advanced Technology Requirements for Advanced High Speed Commercial Transport Engines. 2: Engine Preliminary Design Assessment PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 84

Get Book Here

Book Description


An Airline Study of Advanced Technology Requirements for Advanced High Speed Commercial Transport Engines. 1: Engine Design Study Assessment

An Airline Study of Advanced Technology Requirements for Advanced High Speed Commercial Transport Engines. 1: Engine Design Study Assessment PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 116

Get Book Here

Book Description


Commercial Aircraft Propulsion and Energy Systems Research

Commercial Aircraft Propulsion and Energy Systems Research PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309440998
Category : Technology & Engineering
Languages : en
Pages : 123

Get Book Here

Book Description
The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.

Aircraft Propulsion

Aircraft Propulsion PDF Author: Saeed Farokhi
Publisher: John Wiley & Sons
ISBN: 111880676X
Category : Technology & Engineering
Languages : en
Pages : 1052

Get Book Here

Book Description
New edition of the successful textbook updated to include new material on UAVs, design guidelines in aircraft engine component systems and additional end of chapter problems Aircraft Propulsion, Second Edition follows the successful first edition textbook with comprehensive treatment of the subjects in airbreathing propulsion, from the basic principles to more advanced treatments in engine components and system integration. This new edition has been extensively updated to include a number of new and important topics. A chapter is now included on General Aviation and Uninhabited Aerial Vehicle (UAV) Propulsion Systems that includes a discussion on electric and hybrid propulsion. Propeller theory is added to the presentation of turboprop engines. A new section in cycle analysis treats Ultra-High Bypass (UHB) and Geared Turbofan engines. New material on drop-in biofuels and design for sustainability is added to refl ect the FAA’s 2025 Vision. In addition, the design guidelines in aircraft engine components are expanded to make the book user friendly for engine designers. Extensive review material and derivations are included to help the reader navigate through the subject with ease. Key features: General Aviation and UAV Propulsion Systems are presented in a new chapter Discusses Ultra-High Bypass and Geared Turbofan engines Presents alternative drop-in jet fuels Expands on engine components' design guidelines The end-of-chapter problem sets have been increased by nearly 50% and solutions are available on a companion website Presents a new section on engine performance testing and instrumentation Includes a new 10-Minute Quiz appendix (with 45 quizzes) that can be used as a continuous assessment and improvement tool in teaching/learning propulsion principles and concepts Includes a new appendix on Rules of Thumb and Trends in aircraft propulsion Aircraft Propulsion, Second Edition is a must-have textbook for graduate and undergraduate students, and is also an excellent source of information for researchers and practitioners in the aerospace and power industry.

Advanced Turboprop Project

Advanced Turboprop Project PDF Author: Roy D. Hager
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 140

Get Book Here

Book Description


Aircraft Design for Reduced Climate Impact

Aircraft Design for Reduced Climate Impact PDF Author: Emily Dallara
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 174

Get Book Here

Book Description
Aircraft affect global climate through emissions of greenhouse gases and their precursors and by altering cirrus cloudiness. Changes in operations and design of future aircraft may be necessary to meet goals for limiting climate change. One method for reducing climate impacts involves designing aircraft to fly at altitudes where the impacts of NOx emissions are less severe and persistent contrail formation is less likely. By considering these altitude effects and additionally applying climate mitigation technologies, impacts can be reduced by 45-70% with simultaneous savings in total operating costs. Uncertainty is assessed, demonstrating that relative climate impact savings can be expected despite large scientific uncertainties. Strategies for improving climate performance of existing aircraft are also explored, revealing potential climate impact savings of 20-40%, traded for a 2% increase in total operating costs and reduced maximum range.

Cost/Effort Drivers and Decision Analysis

Cost/Effort Drivers and Decision Analysis PDF Author: Jonathan Seidel
Publisher: BiblioGov
ISBN: 9781289018696
Category :
Languages : en
Pages : 24

Get Book Here

Book Description
Engineering trade study analyses demand consideration of performance, cost and schedule impacts across the spectrum of alternative concepts and in direct reference to product requirements. Prior to detailed design, requirements are too often ill-defined (only goals ) and prone to creep, extending well beyond the Systems Requirements Review. Though lack of engineering design and definitive requirements inhibit the ability to perform detailed cost analyses, affordability trades still comprise the foundation of these future product decisions and must evolve in concert. This presentation excerpts results of the recent NASA subsonic Engine Concept Study for an Advanced Single Aisle Transport to demonstrate an affordability evaluation of performance characteristics and the subsequent impacts on engine architecture decisions. Applying the Process Based Economic Analysis Tool (PBEAT), development cost, production cost, as well as operation and support costs were considered in a traditional weighted ranking of the following system-level figures of merit: mission fuel burn, take-off noise, NOx emissions, and cruise speed. Weighting factors were varied to ascertain the architecture ranking sensitivities to these performance figures of merit with companion cost considerations. A more detailed examination of supersonic variable cycle engine cost is also briefly presented, with observations and recommendations for further refinements.

Study of an Advanced Transport Airplane Design Concept Known as Flatbed

Study of an Advanced Transport Airplane Design Concept Known as Flatbed PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 184

Get Book Here

Book Description