Emergent Phenomena at Complex Oxide Interfaces

Emergent Phenomena at Complex Oxide Interfaces PDF Author: Pu Yu
Publisher:
ISBN:
Category :
Languages : en
Pages : 248

Get Book Here

Book Description
Novel phenomena and functionalities at epitaxial complex oxide heterostructures have been attracting huge scientific attention because of the intriguing fundamental physics as well as potential for technological applications that they embody. Essentially, charge and spin reconstruction at the interface can lead to exotic properties, which are completely different from those inherent to the individual materials, for example, a conductive interface between two insulating materials and interface ferromagnetism in the proximity of an antiferromagnet. The interplay between charge and spin degrees of freedom can be particularly intriguing, leading to a fascinating realm, called multiferroic. In this dissertation, a systematic study is performed on the electronic (charge) and magnetic (spin) interaction/reconstruction across the interface of an all-oxide model heterostructure system consisting of the ferromagnet (FM) La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO) and the multiferroic (ferroelectric and antiferromagnetic) BiFeO$_3$ (BFO). The study demonstrates two pathways of using these exotic interfacial properties to control bulk properties, both the ferroelectricity in BFO and ferromagnetism in LSMO. The journey starts with the growth of high-quality BFO/LSMO heterostructures with unit-cell precision control using reflection high-energy electron diffraction combined with pulsed-laser deposition, providing an important platform for the investigation of electronic and magnetic coupling phenomena across the interface. First, we have observed a novel consequence of the interface electronic interaction due to the so-called ``polar discontinuity'', namely, a built-in electrostatic potential accumulates across the heterointerface, and provides deterministic control of ferroelectric polarization states in thin films. This observation suggests a strong, delocalized effect with important implications for future electronics based on such materials. Secondly, we have revealed a strong magnetic coupling at this interface, manifested in the form of an enhanced coercive field as well as a significant exchange-bias coupling. Based on our x-ray magnetic circular dichroism studies, the origin of the exchange-bias coupling is attributed to a novel ferromagnetic state formed in the antiferromagnetic BFO sublattice at the interface with LSMO. Thirdly, using a field effect geometry, we have proposed a pathway to use an electric field to control the magnetism in LSMO in which the ground state of the interfacial ferromagnetic state is strongly correlated with the ferroelectric polarization. Magnetotransport measurements clearly demonstrate a reversible switch/control between two distinct exchange-bias states by isothermally switching the ferroelectric polarization of BFO. This is an important step towards controlling magnetization with the electric field, which may enable a new class of electrically controllable spintronic devices and provide a new basis for producing electrically controllable spin-polarized currents. Finally, combining experimental results with first-principle and phenomenological model calculations, a microscopic model has been proposed to understand the underlying physics of the magnetoelectric coupling, providing further insights on achieving the electric-field control of magnetism. In summary, our studies on the interfacial electronic and magnetic properties at BFO/LSMO heterointerfaces have revealed a strong interplay between the charge, spin, orbital and lattice degrees of freedom at the interface, which will have important implications for a new pathway to use the interface properties to control bulk functionalities (ferroelectric polarization and ferromagnetic magnetization in this study). Such couplings at the interface may be extended to other oxides and will bring into play remarkable physical concepts to this developing field of complex oxide heterointerfaces.

Emergent Phenomena at Complex Oxide Interfaces

Emergent Phenomena at Complex Oxide Interfaces PDF Author: Pu Yu
Publisher:
ISBN:
Category :
Languages : en
Pages : 248

Get Book Here

Book Description
Novel phenomena and functionalities at epitaxial complex oxide heterostructures have been attracting huge scientific attention because of the intriguing fundamental physics as well as potential for technological applications that they embody. Essentially, charge and spin reconstruction at the interface can lead to exotic properties, which are completely different from those inherent to the individual materials, for example, a conductive interface between two insulating materials and interface ferromagnetism in the proximity of an antiferromagnet. The interplay between charge and spin degrees of freedom can be particularly intriguing, leading to a fascinating realm, called multiferroic. In this dissertation, a systematic study is performed on the electronic (charge) and magnetic (spin) interaction/reconstruction across the interface of an all-oxide model heterostructure system consisting of the ferromagnet (FM) La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO) and the multiferroic (ferroelectric and antiferromagnetic) BiFeO$_3$ (BFO). The study demonstrates two pathways of using these exotic interfacial properties to control bulk properties, both the ferroelectricity in BFO and ferromagnetism in LSMO. The journey starts with the growth of high-quality BFO/LSMO heterostructures with unit-cell precision control using reflection high-energy electron diffraction combined with pulsed-laser deposition, providing an important platform for the investigation of electronic and magnetic coupling phenomena across the interface. First, we have observed a novel consequence of the interface electronic interaction due to the so-called ``polar discontinuity'', namely, a built-in electrostatic potential accumulates across the heterointerface, and provides deterministic control of ferroelectric polarization states in thin films. This observation suggests a strong, delocalized effect with important implications for future electronics based on such materials. Secondly, we have revealed a strong magnetic coupling at this interface, manifested in the form of an enhanced coercive field as well as a significant exchange-bias coupling. Based on our x-ray magnetic circular dichroism studies, the origin of the exchange-bias coupling is attributed to a novel ferromagnetic state formed in the antiferromagnetic BFO sublattice at the interface with LSMO. Thirdly, using a field effect geometry, we have proposed a pathway to use an electric field to control the magnetism in LSMO in which the ground state of the interfacial ferromagnetic state is strongly correlated with the ferroelectric polarization. Magnetotransport measurements clearly demonstrate a reversible switch/control between two distinct exchange-bias states by isothermally switching the ferroelectric polarization of BFO. This is an important step towards controlling magnetization with the electric field, which may enable a new class of electrically controllable spintronic devices and provide a new basis for producing electrically controllable spin-polarized currents. Finally, combining experimental results with first-principle and phenomenological model calculations, a microscopic model has been proposed to understand the underlying physics of the magnetoelectric coupling, providing further insights on achieving the electric-field control of magnetism. In summary, our studies on the interfacial electronic and magnetic properties at BFO/LSMO heterointerfaces have revealed a strong interplay between the charge, spin, orbital and lattice degrees of freedom at the interface, which will have important implications for a new pathway to use the interface properties to control bulk functionalities (ferroelectric polarization and ferromagnetic magnetization in this study). Such couplings at the interface may be extended to other oxides and will bring into play remarkable physical concepts to this developing field of complex oxide heterointerfaces.

Emergent Phenomena at Oxide Interfaces

Emergent Phenomena at Oxide Interfaces PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r → -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t → -t. In quantum mechanics, the time-evolution of the wave-function? is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin operator changes sign with T-operation. (iii) Gauge symmetry (G), which is associated with a change in the phase of the wave-function as? → e{sup i{theta}}?. Gauge symmetry is connected to the law of charge conservation, and broken G-symmetry corresponds to superconductivity/superfluidity. To summarize, the interplay among these electronic degrees of freedom produces various forms of symmetry breaking patterns of I, T, and G, leading to novel emergent phenomena, which can appear only by the collective behavior of electrons and cannot be expected from individual electrons. Figure 1 shows this schematically by means of several representative phenomena. From this viewpoint, the interfaces of TMOs offer a unique and important laboratory because I is already broken by the structure itself, and the detailed form of broken I-symmetry can often be designed. Also, two-dimensionality usually enhances the effects of electron correlations by reducing their kinetic energy. These two features of oxide interfaces produce many novel effects and functions that cannot be attained in bulk form. Given that the electromagnetic responses are a major source of the physical properties of solids, and new gauge structures often appear in correlated electronic systems, we put 'emergent electromagnetism' at the center of Fig. 1.

Oxide Interfaces

Oxide Interfaces PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 16

Get Book Here

Book Description
This Final Report describes the scientific accomplishments that have been achieved with support from grant DE-FG02-06ER46273 during the period 6/1/2012- 5/31/2016. The overall goals of this program were focused on the behavior of epitaxial oxide heterostructures at atomic length scales (Ångstroms), and correspondingly short time-scales (fs -ns). The results contributed fundamentally to one of the currently most active frontiers in condensed matter physics research, namely to better understand the intricate relationship between charge, lattice, orbital and spin degrees of freedom that are exhibited by complex oxide heterostructures. The findings also contributed towards an important technological goal which was to achieve a better basic understanding of structural and electronic correlations so that the unusual properties of complex oxides can be exploited for energy-critical applications. Specific research directions included: probing the microscopic behavior of epitaxial interfaces and buried layers; novel materials structures that emerge from ionic and electronic reconfiguration at epitaxial interfaces; ultrahigh-resolution mapping of the atomic structure of heterointerfaces using synchrotron-based x-ray surface scattering, including direct methods of phase retrieval; using ultrafast lasers to study the effects of transient strain on coherent manipulation of multi-ferroic order parameters; and investigating structural ordering and relaxation processes in real-time.

Spectroscopy of Complex Oxide Interfaces

Spectroscopy of Complex Oxide Interfaces PDF Author: Claudia Cancellieri
Publisher: Springer
ISBN: 3319749897
Category : Technology & Engineering
Languages : en
Pages : 326

Get Book Here

Book Description
This book summarizes the most recent and compelling experimental results for complex oxide interfaces. The results of this book were obtained with the cutting-edge photoemission technique at highest energy resolution. Due to their fascinating properties for new-generation electronic devices and the challenge of investigating buried regions, the book chiefly focuses on complex oxide interfaces. The crucial feature of exploring buried interfaces is the use of soft X-ray angle-resolved photoemission spectroscopy (ARPES) operating on the energy range of a few hundred eV to increase the photoelectron mean free path, enabling the photons to penetrate through the top layers – in contrast to conventional ultraviolet (UV)-ARPES techniques. The results presented here, achieved by different research groups around the world, are summarized in a clearly structured way and discussed in comparison with other photoemission spectroscopy techniques and other oxide materials. They are complemented and supported by the most recent theoretical calculations as well as results of complementary experimental techniques including electron transport and inelastic resonant X-ray scattering.

Epitaxial Growth of Complex Metal Oxides

Epitaxial Growth of Complex Metal Oxides PDF Author: Gertjan Koster
Publisher: Woodhead Publishing
ISBN: 0081029462
Category : Science
Languages : en
Pages : 534

Get Book Here

Book Description
Epitaxial Growth of Complex Metal Oxides, Second Edition reviews techniques and recent developments in the fabrication quality of complex metal oxides, which are facilitating advances in electronic, magnetic and optical applications. Sections review the key techniques involved in the epitaxial growth of complex metal oxides and explore the effects of strain and stoichiometry on crystal structure and related properties in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films, including optoelectronics, batteries, spintronics and neuromorphic applications. This new edition has been fully updated, with brand new chapters on topics such as atomic layer deposition, interfaces, STEM-EELs, and the epitaxial growth of multiferroics, ferroelectrics and nanocomposites. Examines the techniques used in epitaxial thin film growth for complex oxides, including atomic layer deposition, sputtering techniques, molecular beam epitaxy, and chemical solution deposition techniques Reviews materials design strategies and materials property analysis methods, including the impacts of defects, strain, interfaces and stoichiometry Describes key applications of epitaxially grown metal oxides, including optoelectronics, batteries, spintronics and neuromorphic applications

Multifunctional Oxide Heterostructures

Multifunctional Oxide Heterostructures PDF Author: Evgeny Y. Tsymbal
Publisher: Oxford University Press
ISBN: 0199584125
Category : Science
Languages : en
Pages : 429

Get Book Here

Book Description
This volume explores the rapidly developing field of oxide thin-films and heterostructures, which exhibit unusual physical properties interesting from the fundamental point of view and for device application. The chapters discuss topics that represent some of the key innovations in the field over recent years.

Valence-state Reflectometry of Complex Oxide Heterointerfaces

Valence-state Reflectometry of Complex Oxide Heterointerfaces PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Emergent phenomena in transition-metal-oxide heterostructures such as interface superconductivity and magnetism have been attributed to electronic reconstruction, which, however, is difficult to detect and characterise. Here we overcome the associated difficulties to simultaneously address the electronic degrees of freedom and distinguish interface from bulk effects by implementing a novel approach to resonant X-ray reflectivity (RXR). Our RXR study of the chemical and valance profiles along the polar (001) direction of a LaCoO3 film on NdGaO3 reveals a pronounced valence-state reconstruction from Co3+ in the bulk to Co2+ at the surface, with an areal density close to 0.5 Co2+ ions per unit cell. An identical film capped with polar (001) LaAlO3 maintains the Co3+ valence over its entire thickness. As a result, we interpret this as evidence for electronic reconstruction in the uncapped film, involving the transfer of 0.5e- per unit cell to the subsurface CoO2 layer at its LaO-terminated polar surface.

Strain-induced Phenomenon in Complex Oxide Thin Films

Strain-induced Phenomenon in Complex Oxide Thin Films PDF Author: Ryan Haislmaier
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Complex oxide materials wield an immense spectrum of functional properties such as ferroelectricity, ferromagnetism, magnetoelectricity, optoelectricity, optomechanical, magnetoresistance, superconductivity, etc. The rich coupling between charge, spin, strain, and orbital degrees of freedom makes this material class extremely desirable and relevant for next generation electronic devices and technologies which are trending towards nanoscale dimensions. Development of complex oxide thin film materials is essential for realizing their integration into nanoscale electronic devices, where theoretically predicted multifunctional capabilities of oxides could add tremendous value. Employing thin film growth strategies such as epitaxial strain and heterostructure interface engineering can greatly enhance and even unlock novel material properties in complex oxides, which will be the main focus of this work. However, physically incorporating oxide materials into devices remains a challenge. While advancements in molecular beam epitaxy (MBE) of thin film oxide materials has led to the ability to grow oxide materials with atomic layer precision, there are still major limitations such as controlling stoichiometric compositions during growth as well as creating abrupt interfaces in multi-component layered oxide structures. The work done in this thesis addresses ways to overcome these limitations in order to harness intrinsic material phenomena.The development of adsorption-controlled stoichiometric growth windows of CaTiO3 and SrTiO3 thin film materials grown by hybrid MBE where Ti is supplied using metal-organic titatnium tetraisopropoxide material is thoroughly outlined. These growth windows enable superior epitaxial strain-induced ferroelectric and dielectric properties to be accessed as demonstrated by chemical, structural, electrical, and optical characterization techniques. For tensile strained CaTiO3 and compressive strained SrTiO3 films, the critical effects of nonstoichiometry on ferroelectric properties are investigated, where enhanced ferroelectric responses are only found for stoichiometric films grown inside of the growth windows, whereas outside of the optimal growth window conditions, ferroelectric properties are greatly deteriorated and eventually disappear for highly nonstoichiometric film compositions. Utilizing these stoichiometric growth windows, high temperature polar phase transitions are discovered for compressively strained CaTiO3 films with transition temperatures in excess of 700 K, rendering this material as a strong candidate for high temperature electronic applications. Beyond the synthesis of single phase materials using hybrid MBE, a methodology is presented for constructing layered (SrTiO3)n/(CaTiO3)n superlattice structures, where precise control over the unit cell layering thickness (n) is demonstrated using in-situ reflection high energy electron diffraction. The effects of interface roughness and layering periodicity (n) on the strain-induced ferroelectric properties for a series of n=1-10 (SrTiO3)n/(CaTiO3)n superlattice films are investigated. It is found that the stabilization of a ferroelectric phase is independent of n, but is however strongly dominated by the degree of interface roughness which is quantified by measuring the highest nth order X-ray diffraction peak splitting of each superlattice film. A counter-intuitive realization is made whereby a critical amount of interface roughness is required in order to enable the formation of the predicted strain-stabilized ferroelectric phase, whereas sharp interfaces actually suppress this ferroelectric phase from manifesting. It is shown how high-quality complex oxide superlattices can be constructed using hybrid MBE technique, allowing the ability to control layered materials at the atomic scale. Furthermore, a detailed growth methodology is provided for constructing a layered n=4 SrO(SrTiO3)n Ruddlesden-Popper (RP) phase by hybrid MBE, where the ability to deposit single monolayers of SrO and TiO2 is utilized to build the RP film structure over a time period of 5 hours. This is the first time that a thin film RP phase has been grown using hybrid MBE, where an a stable control over the fluxes is demonstrated during relatively long time periods of growth, which advantageously facilitates the synthesis of high-quality RP materials with excellent structural and chemical homogeneity.Additionally, this work demonstrates some major advancements in optical second harmonic generation (SHG) characterization techniques of ferroelectric thin film materials. The SHG characterization techniques developed here proved to be the bread-and-butter for most of the work performed in this thesis, providing a powerful tool for identifying the existence of strain-induced ferroelectric phases, including their temperature dependence and polar symmetry. The work presented in this dissertation will hopefully provide a preliminary road map for future hybrid MBE growers, scientists and researchers, to develop and investigate epitaxial strain and heterostructure layering induced phenomena in other complex oxide systems.

Phononic and Electronic Excitations in Complex Oxides Studied with Advanced Infrared and Raman Spectroscopy Techniques

Phononic and Electronic Excitations in Complex Oxides Studied with Advanced Infrared and Raman Spectroscopy Techniques PDF Author: Fryderyk Lyzwa
Publisher: Springer Nature
ISBN: 3031118669
Category : Technology & Engineering
Languages : en
Pages : 158

Get Book Here

Book Description
This PhD thesis reports on investigations of several oxide-based materials using advanced infrared and Raman spectroscopy techniques and in combination with external stimuli such as high magnetic or electric field, sptial confinement in thin film heterostructures and the radiation with UV light. This leads to new results in the fields of superconductivity, electronic polarization states and nanoscale phenomena. Among these, the observation of anomalous polar moments is of great relevance for understanding the electric-field-induced metal-to-insulator transistion; and the demonstration that confocal Raman spectroscopy of backfolded acoustic photons in metal-oxide multilayers can be used as a powerful characterization tool for monitoring their interface properties and layer thickness is an important technical development for the engineering of such functional oxide heterostructures.

Functional Metal Oxides

Functional Metal Oxides PDF Author: Satishchandra Balkrishna Ogale
Publisher: John Wiley & Sons
ISBN: 3527654887
Category : Technology & Engineering
Languages : en
Pages : 478

Get Book Here

Book Description
Functional oxides are used both as insulators and metallic conductors in key applications across all industrial sectors. This makes them attractive candidates in modern technology ? they make solar cells cheaper, computers more efficient and medical instrumentation more sensitive. Based on recent research, experts in the field describe novel materials, their properties and applications for energy systems, semiconductors, electronics, catalysts and thin films. This monograph is divided into 6 parts which allows the reader to find their topic of interest quickly and efficiently. * Magnetic Oxides * Dopants, Defects and Ferromagnetism in Metal Oxides * Ferroelectrics * Multiferroics * Interfaces and Magnetism * Devices and Applications This book is a valuable asset to materials scientists, solid state chemists, solid state physicists, as well as engineers in the electric and automotive industries.