Author: John Frederick Schneider
Publisher:
ISBN:
Category : Earthquake hazard analysis
Languages : en
Pages : 270
Book Description
Earthquake Scenario Ground Motion Hazard Maps for the San Francisco Bay Region
Author: John Frederick Schneider
Publisher:
ISBN:
Category : Earthquake hazard analysis
Languages : en
Pages : 270
Book Description
Publisher:
ISBN:
Category : Earthquake hazard analysis
Languages : en
Pages : 270
Book Description
Seismic Motion, Lithospheric Structures, Earthquake and Volcanic Sources
Author: Yehuda Ben-Zion
Publisher: Birkhäuser
ISBN: 3034880103
Category : Science
Languages : en
Pages : 369
Book Description
Geophysicists use seismic signals to image structures in the Earth's interior, to understand the mechanics of earthquake and volcanic sources, and to estimate their associated hazards. Keiiti Aki developed pioneering quantitative methods for extracting useful information from various portions of observed seismograms and applied these methods to many problems in the above fields. This volume honors Aki's contributions with review papers and results from recent applications by his former students and scientific associates pertaining to topics spawned by his work. Discussed subjects include analytical and numerical techniques for calculating dynamic rupture and radiated seismic waves, stochastic models used in engineering seismology, earthquake and volcanic source processes, seismic tomography, properties of lithospheric structures, analysis of scattered waves, and more. The volume will be useful to students and professional geophysicists alike.
Publisher: Birkhäuser
ISBN: 3034880103
Category : Science
Languages : en
Pages : 369
Book Description
Geophysicists use seismic signals to image structures in the Earth's interior, to understand the mechanics of earthquake and volcanic sources, and to estimate their associated hazards. Keiiti Aki developed pioneering quantitative methods for extracting useful information from various portions of observed seismograms and applied these methods to many problems in the above fields. This volume honors Aki's contributions with review papers and results from recent applications by his former students and scientific associates pertaining to topics spawned by his work. Discussed subjects include analytical and numerical techniques for calculating dynamic rupture and radiated seismic waves, stochastic models used in engineering seismology, earthquake and volcanic source processes, seismic tomography, properties of lithospheric structures, analysis of scattered waves, and more. The volume will be useful to students and professional geophysicists alike.
Earthquake Scenario and Probabilistic Ground Shaking Maps for the Salt Lake City, Utah, Metropolitan Area
Author: Ivan Gynmun Wong
Publisher: Utah Geological Survey
ISBN: 1557916667
Category : Science
Languages : en
Pages : 56
Book Description
The Salt Lake City metropolitan area is one of the most seismically hazardous urban areas in the interior of the western U.S. because of its location within the Intermountain Seismic Belt and its position adjacent to the active Wasatch fault. The elapsed time since the last large earthquake on the Salt Lake City segment of the Wasatch fault is approaching the mean recurrence interval based on the short-term paleoseismic record. In order to help raise the awareness of the general public and to help reduce earthquake risk in this area, we have developed nine microzonation maps showing surficial ground-shaking hazard. The maps are GIS-based and incorporate the site response effects of the unconsolidated sediments that underlie most of the metropolitan area within Salt Lake Valley. These nine maps, at a scale of 1:75,000, make up three sets, each consisting of three maps that display color-contoured ground motions in terms of (1) peak horizontal acceleration, (2) horizontal spectral acceleration at a period of 0.2 sec (5 Hz) and, (3) horizontal spectral acceleration at a period of 1.0 sec (1 Hz). One set of maps consists of deterministic or “scenario” maps for a moment magnitude (M) 7.0 earthquake on the Salt Lake City segment of the Wasatch fault. The two other sets are probabilistic maps for the two return periods of building code relevance, 500 and 2,500 years.
Publisher: Utah Geological Survey
ISBN: 1557916667
Category : Science
Languages : en
Pages : 56
Book Description
The Salt Lake City metropolitan area is one of the most seismically hazardous urban areas in the interior of the western U.S. because of its location within the Intermountain Seismic Belt and its position adjacent to the active Wasatch fault. The elapsed time since the last large earthquake on the Salt Lake City segment of the Wasatch fault is approaching the mean recurrence interval based on the short-term paleoseismic record. In order to help raise the awareness of the general public and to help reduce earthquake risk in this area, we have developed nine microzonation maps showing surficial ground-shaking hazard. The maps are GIS-based and incorporate the site response effects of the unconsolidated sediments that underlie most of the metropolitan area within Salt Lake Valley. These nine maps, at a scale of 1:75,000, make up three sets, each consisting of three maps that display color-contoured ground motions in terms of (1) peak horizontal acceleration, (2) horizontal spectral acceleration at a period of 0.2 sec (5 Hz) and, (3) horizontal spectral acceleration at a period of 1.0 sec (1 Hz). One set of maps consists of deterministic or “scenario” maps for a moment magnitude (M) 7.0 earthquake on the Salt Lake City segment of the Wasatch fault. The two other sets are probabilistic maps for the two return periods of building code relevance, 500 and 2,500 years.
U.S. Geological Survey Professional Paper
Author:
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 288
Book Description
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 288
Book Description
Practical Lessons from the Loma Prieta Earthquake
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309050308
Category : Science
Languages : en
Pages : 288
Book Description
The Loma Prieta earthquake struck the San Francisco area on October 17, 1989, causing 63 deaths and $10 billion worth of damage. This book reviews existing research on the Loma Prieta quake and draws from it practical lessons that could be applied to other earthquake-prone areas of the country. The volume contains seven keynote papers presented at a symposium on the earthquake and includes an overview written by the committee offering recommendations to improve seismic safety and earthquake awareness in parts of the country susceptible to earthquakes.
Publisher: National Academies Press
ISBN: 0309050308
Category : Science
Languages : en
Pages : 288
Book Description
The Loma Prieta earthquake struck the San Francisco area on October 17, 1989, causing 63 deaths and $10 billion worth of damage. This book reviews existing research on the Loma Prieta quake and draws from it practical lessons that could be applied to other earthquake-prone areas of the country. The volume contains seven keynote papers presented at a symposium on the earthquake and includes an overview written by the committee offering recommendations to improve seismic safety and earthquake awareness in parts of the country susceptible to earthquakes.
Evaluating Earthquake Hazards in the Los Angeles Region--an Earth-science Perspective
Author: Joseph I. Ziony
Publisher:
ISBN:
Category : Earthquake hazard analysis
Languages : en
Pages : 530
Book Description
An integrated set of studies describing methods for evaluating geologically controlled earthquake hazards as a basis for reducing future losses.
Publisher:
ISBN:
Category : Earthquake hazard analysis
Languages : en
Pages : 530
Book Description
An integrated set of studies describing methods for evaluating geologically controlled earthquake hazards as a basis for reducing future losses.
National Earthquake Resilience
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309186773
Category : Science
Languages : en
Pages : 197
Book Description
The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.
Publisher: National Academies Press
ISBN: 0309186773
Category : Science
Languages : en
Pages : 197
Book Description
The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.
Ground Motions and Soil Liquefaction During Earthquakes
Author: Harry Bolton Seed
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 146
Book Description
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 146
Book Description
Catalogue of U.S. Geological Survey Strong-motion Records, 1987
Author: Geological Survey (U.S.)
Publisher:
ISBN:
Category : Earthquake engineering
Languages : en
Pages : 448
Book Description
Publisher:
ISBN:
Category : Earthquake engineering
Languages : en
Pages : 448
Book Description
Probabilistic Seismic Hazard Assessment for the State of California
Author:
Publisher:
ISBN:
Category : Earthquake hazard analysis
Languages : en
Pages : 74
Book Description
Publisher:
ISBN:
Category : Earthquake hazard analysis
Languages : en
Pages : 74
Book Description