Dynamics of a Particle Introduced Via the Calculus

Dynamics of a Particle Introduced Via the Calculus PDF Author: Percy William Norris
Publisher:
ISBN:
Category : Dynamics of a particle
Languages : en
Pages : 88

Get Book Here

Book Description

Dynamics of a Particle Introduced Via the Calculus

Dynamics of a Particle Introduced Via the Calculus PDF Author: Percy William Norris
Publisher:
ISBN:
Category : Dynamics of a particle
Languages : en
Pages : 88

Get Book Here

Book Description


Physics for Mathematicians

Physics for Mathematicians PDF Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733

Get Book Here

Book Description


Classical Mechanics with Calculus of Variations and Optimal Control

Classical Mechanics with Calculus of Variations and Optimal Control PDF Author: Mark Levi
Publisher: American Mathematical Soc.
ISBN: 0821891383
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
This is an intuitively motivated presentation of many topics in classical mechanics and related areas of control theory and calculus of variations. All topics throughout the book are treated with zero tolerance for unrevealing definitions and for proofs which leave the reader in the dark. Some areas of particular interest are: an extremely short derivation of the ellipticity of planetary orbits; a statement and an explanation of the "tennis racket paradox"; a heuristic explanation (and a rigorous treatment) of the gyroscopic effect; a revealing equivalence between the dynamics of a particle and statics of a spring; a short geometrical explanation of Pontryagin's Maximum Principle, and more. In the last chapter, aimed at more advanced readers, the Hamiltonian and the momentum are compared to forces in a certain static problem. This gives a palpable physical meaning to some seemingly abstract concepts and theorems. With minimal prerequisites consisting of basic calculus and basic undergraduate physics, this book is suitable for courses from an undergraduate to a beginning graduate level, and for a mixed audience of mathematics, physics and engineering students. Much of the enjoyment of the subject lies in solving almost 200 problems in this book.

Fundamentals of Physics I

Fundamentals of Physics I PDF Author: R. Shankar
Publisher: Yale University Press
ISBN: 0300249586
Category : Science
Languages : en
Pages : 523

Get Book Here

Book Description
A beloved introductory physics textbook, now including exercises and an answer key, explains the concepts essential for thorough scientific understanding In this concise book, R. Shankar, a well-known physicist and contagiously enthusiastic educator, explains the essential concepts of Newtonian mechanics, special relativity, waves, fluids, thermodynamics, and statistical mechanics. Now in an expanded edition—complete with problem sets and answers for course use or self-study—this work provides an ideal introduction for college-level students of physics, chemistry, and engineering; for AP Physics students; and for general readers interested in advances in the sciences. The book begins at the simplest level, develops the basics, and reinforces fundamentals, ensuring a solid foundation in the principles and methods of physics.

Advances in Computational Dynamics of Particles, Materials and Structures

Advances in Computational Dynamics of Particles, Materials and Structures PDF Author: Jason Har
Publisher: John Wiley & Sons
ISBN: 1119966922
Category : Technology & Engineering
Languages : en
Pages : 806

Get Book Here

Book Description
Computational methods for the modeling and simulation of the dynamic response and behavior of particles, materials and structural systems have had a profound influence on science, engineering and technology. Complex science and engineering applications dealing with complicated structural geometries and materials that would be very difficult to treat using analytical methods have been successfully simulated using computational tools. With the incorporation of quantum, molecular and biological mechanics into new models, these methods are poised to play an even bigger role in the future. Advances in Computational Dynamics of Particles, Materials and Structures not only presents emerging trends and cutting edge state-of-the-art tools in a contemporary setting, but also provides a unique blend of classical and new and innovative theoretical and computational aspects covering both particle dynamics, and flexible continuum structural dynamics applications. It provides a unified viewpoint and encompasses the classical Newtonian, Lagrangian, and Hamiltonian mechanics frameworks as well as new and alternative contemporary approaches and their equivalences in [start italics]vector and scalar formalisms[end italics] to address the various problems in engineering sciences and physics. Highlights and key features Provides practical applications, from a unified perspective, to both particle and continuum mechanics of flexible structures and materials Presents new and traditional developments, as well as alternate perspectives, for space and time discretization Describes a unified viewpoint under the umbrella of Algorithms by Design for the class of linear multi-step methods Includes fundamentals underlying the theoretical aspects and numerical developments, illustrative applications and practice exercises The completeness and breadth and depth of coverage makes Advances in Computational Dynamics of Particles, Materials and Structures a valuable textbook and reference for graduate students, researchers and engineers/scientists working in the field of computational mechanics; and in the general areas of computational sciences and engineering.

H, Natural science. H*, Medicine and surgery. I, Arts and trades. 1926

H, Natural science. H*, Medicine and surgery. I, Arts and trades. 1926 PDF Author: William Swan Sonnenschein
Publisher:
ISBN:
Category : Best books
Languages : en
Pages : 848

Get Book Here

Book Description


Classical Dynamics of Particles and Systems

Classical Dynamics of Particles and Systems PDF Author: Jerry B. Marion
Publisher: Academic Press
ISBN: 1483272818
Category : Science
Languages : en
Pages : 593

Get Book Here

Book Description
Classical Dynamics of Particles and Systems presents a modern and reasonably complete account of the classical mechanics of particles, systems of particles, and rigid bodies for physics students at the advanced undergraduate level. The book aims to present a modern treatment of classical mechanical systems in such a way that the transition to the quantum theory of physics can be made with the least possible difficulty; to acquaint the student with new mathematical techniques and provide sufficient practice in solving problems; and to impart to the student some degree of sophistication in handling both the formalism of the theory and the operational technique of problem solving. Vector methods are developed in the first two chapters and are used throughout the book. Other chapters cover the fundamentals of Newtonian mechanics, the special theory of relativity, gravitational attraction and potentials, oscillatory motion, Lagrangian and Hamiltonian dynamics, central-force motion, two-particle collisions, and the wave equation.

The Mathematical Gazette

The Mathematical Gazette PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 586

Get Book Here

Book Description


Introduction to Modern Dynamics

Introduction to Modern Dynamics PDF Author: David D. Nolte
Publisher: Oxford University Press
ISBN: 0192583166
Category : Science
Languages : en
Pages : 528

Get Book Here

Book Description
The best parts of physics are the last topics that our students ever see. These are the exciting new frontiers of nonlinear and complex systems that are at the forefront of university research and are the basis of many high-tech businesses. Topics such as traffic on the World Wide Web, the spread of epidemics through globally-mobile populations, or how the synchronization of global economies are governed by universal principles just as profound as Newton's laws. Nonetheless, the conventional university physics curriculum reserves most of these topics for graduate study because of the assumed need for advanced mathematics. However, by using only linear algebra and calculus, combined with exploratory computer simulations, all of these topics become accessible to advanced undergraduate students. The structure of this book combines the three main topics of modern dynamics - chaos theory, dynamics on complex networks, and general relativity - into a coherent framework. By taking a geometric view of physics, concentrating on the time evolution of physical systems as trajectories through abstract spaces, these topics share a common and simple mathematical language through which any student can gain a unified physical intuition. Given the growing importance of complex dynamical systems in many areas of science and technology, this text provides students with an up-to-date foundation for their future careers. This second edition has an updated introductory chapter and has added key topics to help students prepare for their GRE physics subject exam. It also has expanded chapters on Hamiltonian dynamics, Hamiltonian chaos, and Econophysics, while increasing the number of homework problems at the end of each chapter. The second edition is designed to fulfill the textbook needs of any advanced undergraduate course in mechanics.

Mathematical Economics

Mathematical Economics PDF Author: Vasily E. Tarasov
Publisher: MDPI
ISBN: 303936118X
Category : Business & Economics
Languages : en
Pages : 278

Get Book Here

Book Description
This book is devoted to the application of fractional calculus in economics to describe processes with memory and non-locality. Fractional calculus is a branch of mathematics that studies the properties of differential and integral operators that are characterized by real or complex orders. Fractional calculus methods are powerful tools for describing the processes and systems with memory and nonlocality. Recently, fractional integro-differential equations have been used to describe a wide class of economical processes with power law memory and spatial nonlocality. Generalizations of basic economic concepts and notions the economic processes with memory were proposed. New mathematical models with continuous time are proposed to describe economic dynamics with long memory. This book is a collection of articles reflecting the latest mathematical and conceptual developments in mathematical economics with memory and non-locality based on applications of fractional calculus.