Deposition and Characterization of CdS Thin Films for Solar Cell Application

Deposition and Characterization of CdS Thin Films for Solar Cell Application PDF Author: Quazi Galib Samdani
Publisher:
ISBN:
Category : Cadmium sulfide photoconductive cells
Languages : en
Pages : 206

Get Book Here

Book Description

Deposition and Characterization of CdS Thin Films for Solar Cell Application

Deposition and Characterization of CdS Thin Films for Solar Cell Application PDF Author: Quazi Galib Samdani
Publisher:
ISBN:
Category : Cadmium sulfide photoconductive cells
Languages : en
Pages : 206

Get Book Here

Book Description


Thin Film Solar Cells

Thin Film Solar Cells PDF Author: Jef Poortmans
Publisher: John Wiley & Sons
ISBN: 0470091266
Category : Science
Languages : en
Pages : 504

Get Book Here

Book Description
Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.

Thin Film Solar Cells From Earth Abundant Materials

Thin Film Solar Cells From Earth Abundant Materials PDF Author: Subba Ramaiah Kodigala
Publisher: Newnes
ISBN: 0123971829
Category : Technology & Engineering
Languages : en
Pages : 197

Get Book Here

Book Description
The fundamental concept of the book is to explain how to make thin film solar cells from the abundant solar energy materials by low cost. The proper and optimized growth conditions are very essential while sandwiching thin films to make solar cell otherwise secondary phases play a role to undermine the working function of solar cells. The book illustrates growth and characterization of Cu2ZnSn(S1-xSex)4 thin film absorbers and their solar cells. The fabrication process of absorber layers by either vacuum or non-vacuum process is readily elaborated in the book, which helps for further development of cells. The characterization analyses such as XPS, XRD, SEM, AFM etc., lead to tailor the physical properties of the absorber layers to fit well for the solar cells. The role of secondary phases such as ZnS, Cu2-xS,SnS etc., which are determined by XPS, XRD or Raman, in the absorber layers is promptly discussed. The optical spectroscopy analysis, which finds band gap, optical constants of the films, is mentioned in the book. The electrical properties of the absorbers deal the influence of substrates, growth temperature, impurities, secondary phases etc. The low temperature I-V and C-V measurements of Cu2ZnSn(S1-xSex)4 thin film solar cells are clearly described. The solar cell parameters such as efficiency, fill factor, series resistance, parallel resistance provide handful information to understand the mechanism of physics of thin film solar cells in the book. The band structure, which supports to adjust interface states at the p-n junction of the solar cells is given. On the other hand the role of window layers with the solar cells is discussed. The simulation of theoretical efficiency of Cu2ZnSn(S1-xSex)4 thin film solar cells explains how much efficiency can be experimentally extracted from the cells. - One of the first books exploring how to conduct research on thin film solar cells, including reducing costs - Detailed instructions on conducting research

Coatings and Thin-Film Technologies

Coatings and Thin-Film Technologies PDF Author: Jaime Andres Perez Taborda
Publisher: BoD – Books on Demand
ISBN: 1789848709
Category : Technology & Engineering
Languages : en
Pages : 288

Get Book Here

Book Description
The field of coatings and thin-film technologies is rapidly advancing to keep up with new uses for semiconductor, optical, tribological, thermoelectric, solar, security, and smart sensing applications, among others. In this sense, thin-film coatings and structures are increasingly sophisticated with more specific properties, new geometries, large areas, the use of heterogeneous materials and flexible and rigid coating substrates to produce thin-film structures with improved performance and properties in response to new challenges that the industry presents. This book aims to provide the reader with a complete overview of the current state of applications and developments in thin-film technology, discussing applications, health and safety in thin films, and presenting reviews and experimental results of recognized experts in the area of coatings and thin-film technologies.

Electrical and optical characterization of CdxZn1-xS and PbS thin films for photovoltaic applications

Electrical and optical characterization of CdxZn1-xS and PbS thin films for photovoltaic applications PDF Author: Cliff Orori Mosiori
Publisher: GRIN Verlag
ISBN: 3656718407
Category : Science
Languages : en
Pages : 118

Get Book Here

Book Description
Master's Thesis from the year 2011 in the subject Physics - Applied physics, grade: A, Kenyatta University, course: Master of Science ( Physics), language: English, abstract: In this research an n-type CdxZn1-xS and p-type PbS thin films were optimised for solar cell applications employing chemical bath deposition technique. The thin films were prepared using thiourea and nitrates of cadmium, zinc and lead. Deposition of optimised CdxZn1-xS was done by CBD at 820 C and in alkaline conditions while that of PbS was done at room temperature and both films at normal atmospheric pressure utilizing aqueous conditions. This study concentrated on optimising optical and electrical characterization of the films. Optical constant suitable for photovoltaic applications were sort for and for this purpose a UV VIS IR spectrophotometer 3700 DUV was utilised while the electrical properties were investigated using a four point probe connected to a Keithley 2400 source meter interfaced with computer. The optical band gap of the as deposited CdxZn1-xS films varied from 2.47eV (x =0.6) to 2.72 eV (x =1.0), and transmittance above 79% in the VIS - NIR region for the concentration range of x = 0.6 to 1.0, that is, the band gap increased with increasing Zn concentration of the alloy and Cd06Zn0.4S sample showed the widest band gap. It was obtained that the presence of zinc increased optical band gap. The average extinction coefficients for the as deposited CdxZn1-xS samples were very low revealing that they absorb very little radiation hence a good window layer material. As measured by the four point probe connected to a Keithley 2400 source meter, electrical resistivity increased with increase in Zn in the bath in CdxZn1-xS and a resistivity range of 9.5×101 – 1.22× 102 Ω-cm was obtained. These properties are appropriate for window layers used for photovoltaic cell applications. PbS thin films had a band gap of 0.89 eV and a transmittance of below 55% appropriate for absorber layers of photovoltaic cells and a resistivity range of 6.78 × 103 to 1.26 × 104 Ω-cm. The fabricated photovoltaic cell had a short circuit current, Isc = 0.031 A, open voltage, Voc = 0.37V, efficiency, η = 0.9% and a fill factor, FF = 0.66 implying that the two materials are appropriate for photovoltaic applications especially in the VIS and IR light spectrum.

Advanced Characterization Techniques for Thin Film Solar Cells

Advanced Characterization Techniques for Thin Film Solar Cells PDF Author: Daniel Abou-Ras
Publisher: John Wiley & Sons
ISBN: 3527699015
Category : Science
Languages : en
Pages : 760

Get Book Here

Book Description
The book focuses on advanced characterization methods for thin-film solar cells that have proven their relevance both for academic and corporate photovoltaic research and development. After an introduction to thin-film photovoltaics, highly experienced experts report on device and materials characterization methods such as electroluminescence analysis, capacitance spectroscopy, and various microscopy methods. In the final part of the book simulation techniques are presented which are used for ab-initio calculations of relevant semiconductors and for device simulations in 1D, 2D and 3D. Building on a proven concept, this new edition also covers thermography, transient optoelectronic methods, and absorption and photocurrent spectroscopy.

Advanced Characterization of Thin Film Solar Cells

Advanced Characterization of Thin Film Solar Cells PDF Author: Mowafak Al-Jassim
Publisher: Institution of Engineering and Technology
ISBN: 1839530235
Category : Technology & Engineering
Languages : en
Pages : 457

Get Book Here

Book Description
Polycrystalline thin-film solar cells have reached a levelized cost of energy that is competitive with all other sources of electricity. The technology has significantly improved in recent years, with laboratory cell efficiencies for cadmium telluride (CdTe), perovskites, and copper indium gallium diselenide (CIGS) each exceeding 22 percent. Both CdTe and CIGS solar panels are now produced at the gigawatt scale. However, there are ongoing challenges, including the continued need to improve performance and stability while reducing cost. Advancing polycrystalline solar cell technology demands an in-depth understanding of efficiency, scaling, and degradation mechanisms, which requires sophisticated characterization methods. These methods will enable researchers and manufacturers to improve future solar modules and systems.

The Deposition and Characterization of Mo/CuInGaSe2/CdS/ZnO Solar Cells

The Deposition and Characterization of Mo/CuInGaSe2/CdS/ZnO Solar Cells PDF Author: Hamda A. Al-Thani
Publisher:
ISBN:
Category : Cadmium sulfide photoconductive cells
Languages : en
Pages : 11

Get Book Here

Book Description


Enhancement of the Deposition Processes of Cu(In, Ga)Se2 and Cds Thin Films Via In-situ and Ex-situ Measurements for Solar Cell Application

Enhancement of the Deposition Processes of Cu(In, Ga)Se2 and Cds Thin Films Via In-situ and Ex-situ Measurements for Solar Cell Application PDF Author: Vikash Ranjan
Publisher:
ISBN:
Category : Solar cells
Languages : en
Pages : 164

Get Book Here

Book Description
Thin films of Cu(In, Ga)Se2 deposited by 1-stage, 2-stage and 3-stage co-evaporation processes result into the highest efficiency solar cells. Controlling the rate and sequences of individual sources during these co-evaporation processes are important for better quality Cu(In, Ga)Se2 absorber layers. At the same time, spectroscopic ellipsometry due to its ex-situ as well as in-situ application is considered as a very powerful tool to understand the material properties as well as to monitor the process. Nevertheless, spectroscopic ellipsometry was not properly utilized until now to characterize Cu(In, Ga)Se2 thin films. In this study, one of our goal is to understand the optical and electrical properties of Cu(In, Ga)Se2 as a function of process and composition. In the first part of this study, we implemented ex-situ spectroscopic ellipsometry (SE) along with other characterization techniques like Secondary ion mass spectroscopy (SIMS), Scanning electron microscopy (SEM), Auger electron spectroscopy (AES), x-ray diffraction (XRD), atomic force microscopy (AFM) etc. to compare Cu(In, Ga)Se2 thin films deposited by the above mentioned three co-evaporation processes. During this study, we were able to use SE to find the thickness, roughness, band gap, Ga grading of the Cu(In, Ga)Se2 deposited by 2-stage and 3-stage process. Finding of SE were correlated by SIMS, AES, SEM etc. In the case of Cu(In, Ga)Se2 deposited by 1-stage process, due to the high surface roughness, we are not able to implement the ex-situ spectroscopic ellipsometry. In the second and third part of this study, real time spectroscopic ellipsometry is implemented to study the material properties of Cu(In, Ga)Se2 thin films as a function of Cu and Ga concentration. Effectively, in a 3-stage co-evaporation process, the composition of the film changes during the process. To monitor and control the composition of Cu(In, Ga)Se2 during the 3-stage process by in-situ ellipsometry, it was necessary to understand the optical properties of Cu(In, Ga)Se2 as a function of Cu atomic percentage (at.%) as well as Ga at.%. Along with this, the inability to implement ex-situ SE for Cu(In, Ga)Se2 thin film motivated us to implement the spectroscopic ellipsometry in real time i.e. during the growth of the film. This in-situ real time application of SE helped us in understanding the micostructural evolution and dependence of the band gap with the Cu atomic percentage (at.%) as well as the Ga at.%. We also used this opportunity to understand the shift in the critical points as a function of temperature for CuInSe2 alloys. Characterization like AES, XRD, AFM etc were performed after the growth at room temperature to corroborate the RTSE findings. In the fourth and last part of this study, the growth of CdS on a Cu(In, Ga)Se2 surface as a function of time was studied using SE as well as AFM. We also used this opportunity to compare the growth of CdS on another substrate (SiO2). Spectroscopic ellipsometry and AFM revealed a quantum confinement effect in the case of CdS on SiO2 whereas no such effect was observed for CdS on Cu(In, Ga)Se2 surface due to the growth of compact CdS layers.

Simple Chemical Methods for Thin Film Deposition

Simple Chemical Methods for Thin Film Deposition PDF Author: Babasaheb R. Sankapal
Publisher: Springer Nature
ISBN: 9819909619
Category : Science
Languages : en
Pages : 590

Get Book Here

Book Description
This book explores chemical methods for thin film deposition with diverse nanostructured morphology and their applications. Unlike top-down techniques, chemical methods offer low cost, simplicity, and growth of nanostructured surface architecture with ease of small to large-scale area deposition. The book primarily focuses on innovative twelve chemical methods for thin-film deposition on one platform. Since each method has its own advantages and disadvantages, it is crucial to select the specific method for specific material to be deposited depending upon what type of application is targeted. Due to inclusive of diverse chemical deposition methods, researcher will have knowledge about best choice of the deposition method to be adopted. Inclusive methods discussed in the book are chemical bath deposition, successive ionic layer adsorption and reaction, ion exchange, electroless deposition, electrodeposition, hydrothermal, spray pyrolysis, spin coating, dip coating, doctor blade, screen printing, and sol-gel. The selection of the correct procedure for material to be deposited in thin film form depends on its unique process parameters based on the kind of application and its requirement. The role of preparative factors necessary for thin film alters properties related to structure and surface morphology, electrical conductivity and optical band gap which have been extensively discussed along with the underlying science of film synthesis. The book provides a comprehensive overview of the field of chemical methods for thin film synthesis to applications. In addition to synthesis, the book covers characterization, instrumentation, and industrial application of thin films. As a result, concentrated techniques will be of great interest to university/college professors, students and new engineers as well as postdocs and scientists in the area.