Decision Making Under Uncertainty

Decision Making Under Uncertainty PDF Author: Mykel J. Kochenderfer
Publisher: MIT Press
ISBN: 0262331713
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.

Decision Making Under Uncertainty

Decision Making Under Uncertainty PDF Author: Mykel J. Kochenderfer
Publisher: MIT Press
ISBN: 0262331713
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.

Theory of Decision Under Uncertainty

Theory of Decision Under Uncertainty PDF Author: Itzhak Gilboa
Publisher: Cambridge University Press
ISBN: 052151732X
Category : Business & Economics
Languages : en
Pages : 216

Get Book Here

Book Description
This book describes the classical axiomatic theories of decision under uncertainty, as well as critiques thereof and alternative theories. It focuses on the meaning of probability, discussing some definitions and surveying their scope of applicability. The behavioral definition of subjective probability serves as a way to present the classical theories, culminating in Savage's theorem. The limitations of this result as a definition of probability lead to two directions - first, similar behavioral definitions of more general theories, such as non-additive probabilities and multiple priors, and second, cognitive derivations based on case-based techniques.

Decisions Under Uncertainty

Decisions Under Uncertainty PDF Author: Ian Jordaan
Publisher: Cambridge University Press
ISBN: 9780521782777
Category : Business & Economics
Languages : en
Pages : 696

Get Book Here

Book Description
Publisher Description

Decision Making under Deep Uncertainty

Decision Making under Deep Uncertainty PDF Author: Vincent A. W. J. Marchau
Publisher: Springer
ISBN: 3030052524
Category : Business & Economics
Languages : en
Pages : 408

Get Book Here

Book Description
This open access book focuses on both the theory and practice associated with the tools and approaches for decisionmaking in the face of deep uncertainty. It explores approaches and tools supporting the design of strategic plans under deep uncertainty, and their testing in the real world, including barriers and enablers for their use in practice. The book broadens traditional approaches and tools to include the analysis of actors and networks related to the problem at hand. It also shows how lessons learned in the application process can be used to improve the approaches and tools used in the design process. The book offers guidance in identifying and applying appropriate approaches and tools to design plans, as well as advice on implementing these plans in the real world. For decisionmakers and practitioners, the book includes realistic examples and practical guidelines that should help them understand what decisionmaking under deep uncertainty is and how it may be of assistance to them. Decision Making under Deep Uncertainty: From Theory to Practice is divided into four parts. Part I presents five approaches for designing strategic plans under deep uncertainty: Robust Decision Making, Dynamic Adaptive Planning, Dynamic Adaptive Policy Pathways, Info-Gap Decision Theory, and Engineering Options Analysis. Each approach is worked out in terms of its theoretical foundations, methodological steps to follow when using the approach, latest methodological insights, and challenges for improvement. In Part II, applications of each of these approaches are presented. Based on recent case studies, the practical implications of applying each approach are discussed in depth. Part III focuses on using the approaches and tools in real-world contexts, based on insights from real-world cases. Part IV contains conclusions and a synthesis of the lessons that can be drawn for designing, applying, and implementing strategic plans under deep uncertainty, as well as recommendations for future work. The publication of this book has been funded by the Radboud University, the RAND Corporation, Delft University of Technology, and Deltares.

Decision Making Under Uncertainty

Decision Making Under Uncertainty PDF Author: Claude Greengard
Publisher: Springer Science & Business Media
ISBN: 146849256X
Category : Mathematics
Languages : en
Pages : 166

Get Book Here

Book Description
In the ideal world, major decisions would be made based on complete and reliable information available to the decision maker. We live in a world of uncertainties, and decisions must be made from information which may be incomplete and may contain uncertainty. The key mathematical question addressed in this volume is "how to make decision in the presence of quantifiable uncertainty." The volume contains articles on model problems of decision making process in the energy and power industry when the available information is noisy and/or incomplete. The major tools used in studying these problems are mathematical modeling and optimization techniques; especially stochastic optimization. These articles are meant to provide an insight into this rapidly developing field, which lies in the intersection of applied statistics, probability, operations research, and economic theory. It is hoped that the present volume will provide entry to newcomers into the field, and stimulation for further research.

Decision Making Under Uncertainty in Electricity Markets

Decision Making Under Uncertainty in Electricity Markets PDF Author: Antonio J. Conejo
Publisher: Springer Science & Business Media
ISBN: 1441974210
Category : Business & Economics
Languages : en
Pages : 549

Get Book Here

Book Description
Decision Making Under Uncertainty in Electricity Markets provides models and procedures to be used by electricity market agents to make informed decisions under uncertainty. These procedures rely on well established stochastic programming models, which make them efficient and robust. Particularly, these techniques allow electricity producers to derive offering strategies for the pool and contracting decisions in the futures market. Retailers use these techniques to derive selling prices to clients and energy procurement strategies through the pool, the futures market and bilateral contracting. Using the proposed models, consumers can derive the best energy procurement strategies using the available trading floors. The market operator can use the techniques proposed in this book to clear simultaneously energy and reserve markets promoting efficiency and equity. The techniques described in this book are of interest for professionals working on energy markets, and for graduate students in power engineering, applied mathematics, applied economics, and operations research.

Decision Making Under Uncertainty

Decision Making Under Uncertainty PDF Author: Charles A. Holloway
Publisher:
ISBN: 9780131978300
Category : Decision making
Languages : en
Pages : 522

Get Book Here

Book Description


Advances in Decision Making Under Risk and Uncertainty

Advances in Decision Making Under Risk and Uncertainty PDF Author: Mohammed Abdellaoui
Publisher: Springer Science & Business Media
ISBN: 3540684360
Category : Business & Economics
Languages : en
Pages : 245

Get Book Here

Book Description
Whether we like it or not we all feel that the world is uncertain. From choosing a new technology to selecting a job, we rarely know in advance what outcome will result from our decisions. Unfortunately, the standard theory of choice under uncertainty developed in the early forties and fifties turns out to be too rigid to take many tricky issues of choice under uncertainty into account. The good news is that we have now moved away from the early descriptively inadequate modeling of behavior. This book brings the reader into contact with the accomplished progress in individual decision making through the most recent contributions to uncertainty modeling and behavioral decision making. It also introduces the reader into the many subtle issues to be resolved for rational choice under uncertainty.

Design Decisions Under Uncertainty with Limited Information

Design Decisions Under Uncertainty with Limited Information PDF Author: Efstratios Nikolaidis
Publisher: CRC Press
ISBN: 9781138115095
Category :
Languages : en
Pages : 538

Get Book Here

Book Description
Today's business environment involves design decisions with significant uncertainty. To succeed, decision-makers should replace deterministic methods with a risk-based approach that accounts for the decision maker¿s risk tolerance. In many problems, it is impractical to collect data because rare or one-time events are involved. Therefore, we need a methodology to model uncertainty and make choices when we have limited information. This methodology must use all available information and rely only on assumptions that are supported by evidence. This book explains theories and tools to represent uncertainty using both data and expert judgment. It teaches the reader how to make design or business decisions when there is limited information with these tools. Readers will learn a structured, risk-based approach, which is based on common sense principles, for design and business decisions. These decisions are consistent with the decision-maker¿s risk attitude. The book is exceptionally suited as educational material because it uses everyday language and real-life examples to elucidate concepts. It demonstrates how these concepts touch our lives through many practical examples, questions and exercises. These are designed to help students learn that first they should understand a problem and then establish a strategy for solving it, instead of using trial-and-error approaches. This volume is intended for undergraduate and graduate courses in mechanical, civil, industrial, aerospace, and ocean engineering and for researchers and professionals in these disciplines. It will also benefit managers and students in business administration who want to make good decisions with limited information.

Investment under Uncertainty

Investment under Uncertainty PDF Author: Robert K. Dixit
Publisher: Princeton University Press
ISBN: 1400830176
Category : Business & Economics
Languages : en
Pages : 484

Get Book Here

Book Description
How should firms decide whether and when to invest in new capital equipment, additions to their workforce, or the development of new products? Why have traditional economic models of investment failed to explain the behavior of investment spending in the United States and other countries? In this book, Avinash Dixit and Robert Pindyck provide the first detailed exposition of a new theoretical approach to the capital investment decisions of firms, stressing the irreversibility of most investment decisions, and the ongoing uncertainty of the economic environment in which these decisions are made. In so doing, they answer important questions about investment decisions and the behavior of investment spending. This new approach to investment recognizes the option value of waiting for better (but never complete) information. It exploits an analogy with the theory of options in financial markets, which permits a much richer dynamic framework than was possible with the traditional theory of investment. The authors present the new theory in a clear and systematic way, and consolidate, synthesize, and extend the various strands of research that have come out of the theory. Their book shows the importance of the theory for understanding investment behavior of firms; develops the implications of this theory for industry dynamics and for government policy concerning investment; and shows how the theory can be applied to specific industries and to a wide variety of business problems.