Crystallography of Protein Dynamics

Crystallography of Protein Dynamics PDF Author:
Publisher: Elsevier
ISBN: 0443159270
Category : Science
Languages : en
Pages : 404

Get Book Here

Book Description
Approx.400 pagesApprox.400 pages

Using X-ray Crystallography for the Analysis of Protein Dynamics

Using X-ray Crystallography for the Analysis of Protein Dynamics PDF Author: Elena J. Levin
Publisher:
ISBN:
Category :
Languages : en
Pages : 190

Get Book Here

Book Description


Time-resolved Protein Dynamics Using X-ray Crystallography and Optical Spectroscopy

Time-resolved Protein Dynamics Using X-ray Crystallography and Optical Spectroscopy PDF Author: James Michael Baxter
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Principles of Protein X-ray Crystallography

Principles of Protein X-ray Crystallography PDF Author: Jan Drenth
Publisher: Springer Science & Business Media
ISBN: 1475730926
Category : Science
Languages : en
Pages : 355

Get Book Here

Book Description
New textbooks at all levels of chemistry appear with great regularity. Some fields such as basic biochemistry, organic reaction mechanisms, and chemical thermodynamics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the graduate level, suffer from a real lack of up to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research that is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive intro ductions to their fields. These should serve the needs of one-semester or one-quarter graduate courses in chemistry and biochemistry. In some cases, the availability of texts in active research areas should help stimulate the creation of new courses. Charles R. Cantor v Preface to the Second Edition Since the publication of the previous edition in 1994, X-ray crystallography of proteins has advanced by improvements in existing techniques and by addition of new techniques.

Macromolecular Crystallography

Macromolecular Crystallography PDF Author: Maria Armenia Carrondo
Publisher: Springer
ISBN: 9400725302
Category : Science
Languages : en
Pages : 213

Get Book Here

Book Description
This volume is a collection of the contributions presented at the 42nd Erice Crystallographic Course whose main objective was to train the younger generation on advanced methods and techniques for examining structural and dynamic aspects of biological macromolecules. The papers review the techniques used to study protein assemblies and their dynamics, including X-ray diffraction and scattering, electron cryo-electron microscopy, electro nanospray mass spectrometry, NMR, protein docking and molecular dynamics. A key theme throughout the book is the dependence of modern structural science on multiple experimental and computational techniques, and it is the development of these techniques and their integration that will take us forward in the future.

The Next Generation in Membrane Protein Structure Determination

The Next Generation in Membrane Protein Structure Determination PDF Author: Isabel Moraes
Publisher: Springer
ISBN: 3319350722
Category : Science
Languages : en
Pages : 188

Get Book Here

Book Description
This book reviews current techniques used in membrane protein structural biology, with a strong focus on practical issues. The study of membrane protein structures not only provides a basic understanding of life at the molecular level but also helps in the rational and targeted design of new drugs with reduced side effects. Today, about 60% of the commercially available drugs target membrane proteins and it is estimated that nearly 30% of proteins encoded in the human genome are membrane proteins. In recent years much effort has been put towards innovative developments to overcome the numerous obstacles associated with the structure determination of membrane proteins. This book reviews a variety of recent techniques that are essential to any modern researcher in the field of membrane protein structural biology. The topics that are discussed are not commonly found in textbooks. The scope of this book includes: Expression screening using fluorescent proteins The use of detergents in membrane protein research The use of NMR Synchrotron developments in membrane protein structural biology Visualisation and X-ray data collection of microcrystals X-ray diffraction data analysis from multiple crystals Serial millisecond crystallography Serial femtosecond crystallography Membrane protein structures in drug discovery The information provided in this book should be of interest to anyone working in the area of structural biology. Students will find carefully prepared overviews of basic ideas and advanced protein scientists will find the level of detail required to apply the material directly to their day to day work. Chapters 4, 5, 6, 8 and 9 of this book are published open access under a CC BY 4.0 license at link.springer.com.

Development of X-Ray Methods for the Investigation of Protein Dynamics

Development of X-Ray Methods for the Investigation of Protein Dynamics PDF Author: Alexander Michael Wolff
Publisher:
ISBN: 9781658493000
Category : Biophysics
Languages : en
Pages : 167

Get Book Here

Book Description
Throughout history, methodological innovations have resulted in breakthroughs in our understanding of biology. Methods for determining static protein structures, as well as those for probing protein dynamics, are well-established. Nonetheless, visualizing molecules as dynamic entities that respond to their environment is still an outstanding challenge. Specifically, it is challenging to measure the spatial position of all the atoms within a molecule as a function of time. That challenge is the broad focus of this dissertation.In chapter one, I begin by diving into modern crystallographic techniques that enable one to solve protein structures from sub-micron-sized crystals. I compare and contrast two methods, serial crystallography and electron crystallography, asking how each technique affects the protein's structure. A primary factor differentiating these two methods is the temperature of the sample during the experiment. Despite this difference, both methods enable one to solve high-resolution structures from small crystals. This is advantageous for time-resolved experiments. Since there are fewer molecules in a small crystal, the perturbation is more uniform, which provides a clearer time-resolved signal. In chapter two, I investigate temperature-jumps as a generalized perturbation for resolving the energy landscape of proteins. In this work, I focus on solution scattering experiments, which allow one to examine large-scale perturbations to a protein, as well as changes in the solvent shell surrounding the molecule. By mutating selected residues, we inhibited specific protein motions. Comparing these mutants to the wild-type protein allowed us to resolve the motions driven by an infrared laser. Nonetheless, we wished to gain all-atom spatial resolution, which required us to perform a temperature-jump within the context of crystallography rather than solution scattering.In chapter three, I expand upon the temperature-jump detection method described in chapter two. By adapting this method to accommodate X-ray diffraction images, I demonstrate that we can detect temperature-jumps within a crystalline context. This is a crucial step in the development of a generalized perturbation for time-resolved crystallography. Given the timescale of the measurements, reading out the temperature directly from the X-ray data is the only effective way to track the sample's response. Thus, our method offers proof-of-principle that IR laser-based temperature-jumps are feasible for time-resolved crystallography. While measuring the diffuse scattering signal is useful for temperature-jump detection, the diffuse signal also holds the potential to inform our understanding of protein dynamics.In chapter four, I review the field of macromolecular diffuse scattering, as of late 2017. I begin by considering data collection practices, which requires extremely careful and controlled measurements. Then I examine different group's approaches to processing the data, as well as their models of the disorder that drives it. Finally, I consider the broader impact of diffuse analysis upon the field, ranging from the improvement of molecular dynamics forcefields to improved phasing and resolution extension. While these impacts hold exciting implications, it is clear that collecting high-quality is the first challenge to solve.In chapter five, I examine the challenges of collecting high-quality diffuse scattering from protein crystals. I describe how parasitic scattering can confound our ability to develop rigorous models of the crystalline disorder that gives rise to the diffuse signal. Then I work through experimental measures that we took to minimize parasitic scattering while maximizing diffuse scatter driven by protein motions.

Protein Crystallography

Protein Crystallography PDF Author: T. L. Blundell
Publisher: Academic Press
ISBN:
Category : Science
Languages : en
Pages : 592

Get Book Here

Book Description


Practical Protein Crystallography

Practical Protein Crystallography PDF Author: Duncan E. McRee
Publisher: Academic Press
ISBN: 0323138888
Category : Science
Languages : en
Pages : 403

Get Book Here

Book Description
Designed for easy use by both new and experienced protein crystallographers, this much-needed book is for anyone interested in solving protein structures by the method of crystallography. It contains many examples ofactual experiments and data, including electron density maps. Computer methods and computer code samples are presented. Practical Protein Crystallography is loaded with new information on area detectors, synchrotron radiation techniques, and the latest computer methods, and features the XtalView software system. Graduate students and teachers in physical biochemistry and pharmaceutical researchers will find this text a timely and convenient aid.

Structural Biology in Drug Discovery

Structural Biology in Drug Discovery PDF Author: Jean-Paul Renaud
Publisher: John Wiley & Sons
ISBN: 1118900502
Category : Medical
Languages : en
Pages : 1367

Get Book Here

Book Description
With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins