Control Method for the Wind Turbine Driven by Doubly Fed Induction Generator Under the Unbalanced Operating Conditions

Control Method for the Wind Turbine Driven by Doubly Fed Induction Generator Under the Unbalanced Operating Conditions PDF Author: Xiangpeng Zheng
Publisher:
ISBN:
Category : Electric motors, Induction
Languages : en
Pages : 112

Get Book Here

Book Description
Abstract: This thesis illustrates the principle and the behavior for doubly fed electric machines used in variable speed wind power systems under the balanced and unbalanced operating conditions. A generalized control method for complete stator pulsating power elimination and harmonic elimination in grid currents with adjustable power factor of a doubly fed induction generator under the unbalanced operating conditions is proposed. The theoretical analysis of this proposed control method is presented and then demonstrated by the simulation in Powersim®. The grid ride-through-fault ability by using the proposed method is also tested.

Control Method for the Wind Turbine Driven by Doubly Fed Induction Generator Under the Unbalanced Operating Conditions

Control Method for the Wind Turbine Driven by Doubly Fed Induction Generator Under the Unbalanced Operating Conditions PDF Author: Xiangpeng Zheng
Publisher:
ISBN:
Category : Electric motors, Induction
Languages : en
Pages : 112

Get Book Here

Book Description
Abstract: This thesis illustrates the principle and the behavior for doubly fed electric machines used in variable speed wind power systems under the balanced and unbalanced operating conditions. A generalized control method for complete stator pulsating power elimination and harmonic elimination in grid currents with adjustable power factor of a doubly fed induction generator under the unbalanced operating conditions is proposed. The theoretical analysis of this proposed control method is presented and then demonstrated by the simulation in Powersim®. The grid ride-through-fault ability by using the proposed method is also tested.

Advanced Controls for Wind Driven Doubly Fed Induction Generators

Advanced Controls for Wind Driven Doubly Fed Induction Generators PDF Author: Mahmoud K. Abdelhamid
Publisher: CRC Press
ISBN: 1003832156
Category : Technology & Engineering
Languages : en
Pages : 212

Get Book Here

Book Description
Advanced Controls for Wind Driven Doubly Fed Induction Generators discusses the most advanced control algorithms used for enhancing the dynamics of a doubly fed induction generator (DFIG) operating at fixed and variable speeds, and which are used for different utilization purposes (standalone and grid connection). Extensive generator performance analysis has been introduced using various control topologies. Features: Presents modeling of wind energy conversion systems (WECS), including a wind turbine as a prime mover, a DFIG as a generation unit for electrical energy, and a three-phase induction motor as an isolated load Explores a detailed description for the presented control algorithms in order to visualize the base principle of each method Introduces a comprehensive performance analysis for the DFIG using the formulated predictive voltage control scheme and other control techniques under different operating conditions Examines the formulation of new control approaches which overcome the shortages present in previous DFIG control schemes Presents a detailed comparison between different control topologies for the DFIG to outline the most effective procedure in terms of dynamic response, structure simplicity, ripples, total harmonic distortion, and computational burdens The book is written for researchers and academics working on advanced control systems and those interested in areas such as machine drives, renewable energy systems, 'adaptive control', modeling of WECS, and optimization theory.

Control of a Wind Driven Doubly Fed Induction Generator During Grid Faults

Control of a Wind Driven Doubly Fed Induction Generator During Grid Faults PDF Author: Mahmoud Mossa
Publisher: GRIN Verlag
ISBN: 3656367760
Category : Science
Languages : en
Pages : 134

Get Book Here

Book Description
Master's Thesis from the year 2013 in the subject Engineering - Power Engineering, grade: none, , course: Electrical engineering (Renewable energy), language: English, abstract: Wind electrical power systems are recently getting lot of attention, because they are cost competitive, environmental clean and safe renewable power source, as compared with fossil fuel and nuclear power generation. A special type of induction generator, called a doubly fed induction generator (DFIG), is used extensively for high-power wind applications. They are used more and more in wind turbine applications due to ease controllability, high energy efficiency and improved power quality. This thesis aims to develop a method of a field orientation scheme for control both the active and reactive powers of a DFIG driven by a wind turbine.The proposed control system consists of a wind turbine that drives a DFIG connected to the utility grid through AC-DC-AC link. The main control objective is to regulate the dc link voltage for operation at maximum available wind power.This is achieved by controlling the and axes components of voltages and currents for both rotor side and line side converters using PI controllers. The complete dynamic model of the proposed system is described in detail. Computer simulations have been carried out in order to validate the effectiveness of the proposed system during the variation of wind speed. The results prove that , better overall performances are achieved, quick recover from wind speed disturbances in addition to good tracking ability. Generally, any abnormalities associated with grid asymmetrical faults are going to affect the system performance considerably. During grid faults, unbalanced currents cause negative effects like overheating problems and mechanical stress due to high torque pulsations that can damage the rotor shaft, gearbox or blade assembly. Therefore, the dynamic model of the DFIG, driven by a wind turbine during grid faults has been analyzed and developed using the method of symmetrical components. The dynamic performance of the DFIG during unbalanced grid conditions is analyzed and described in detail using digital simulations. A novel fault ride-through (FRT) capability is proposed (i.e. the ability of the power system to remain connected to the grid during faults) with suitable control strategy in this thesis. In this scheme, the input mechanical energy of the wind turbine during grid faults is stored and utilized at the moment of fault clearance, instead of being dissipated in the resistors of the crowbar circuit as in the existing FRT schemes. [...]

Modeling, Analysis and Enhancement of the performance of a Wind Driven DFIG During steady state and transient conditions

Modeling, Analysis and Enhancement of the performance of a Wind Driven DFIG During steady state and transient conditions PDF Author: Mohmoud Mossa
Publisher: Anchor Academic Publishing (aap_verlag)
ISBN: 3954896397
Category : Science
Languages : en
Pages : 116

Get Book Here

Book Description
Recently, wind electrical power systems are getting a lot of attention since they are cost competitive, environmentally clean, and safe renewable power source as compared with the fossil fuel and nuclear power generation. A special type of induction generator, called a doubly fed induction generator (DFIG), is used extensively for high-power wind applications. They are used more and more in wind turbine applications due to the ease of controllability, the high energy efficiency, and the improved power quality.This research aims to develop a method of a field orientation scheme for control both, the active and the reactive powers of a DFIG that are driven by a wind turbine. Also, the dynamic model of the DFIG, driven by a wind turbine during grid faults, is analyzed and developed, using the method of symmetrical components. Finally, this study proposes a novel fault ride-through (FRT) capability with a suitable control strategy (i.e. the ability of the power system to remain connected to the grid during faults).

Advanced Control of Doubly Fed Induction Generator for Wind Power Systems

Advanced Control of Doubly Fed Induction Generator for Wind Power Systems PDF Author: Dehong Xu
Publisher: John Wiley & Sons
ISBN: 1119172063
Category : Science
Languages : en
Pages : 486

Get Book Here

Book Description
Covers the fundamental concepts and advanced modelling techniques of Doubly Fed Induction Generators accompanied by analyses and simulation results Filled with illustrations, problems, models, analyses, case studies, selected simulation and experimental results, Advanced Control of Doubly Fed Induction Generator for Wind Power Systems provides the basic concepts for modelling and controlling of Doubly Fed Induction Generator (DFIG) wind power systems and their power converters. It explores both the challenges and concerns of DFIG under a non-ideal grid and introduces the control strategies and effective operations performance options of DFIG under a non-ideal grid. Other topics of this book include thermal analysis of DFIG wind power converters under grid faults; implications of the DFIG test bench; advanced control of DFIG under harmonic distorted grid voltage, including multiple-loop and resonant control; modeling of DFIG and GSC under unbalanced grid voltage; the LFRT of DFIG, including the recurring faults ride through of DFIG; and more. In addition, this resource: Explores the challenges and concerns of Doubly Fed Induction Generators (DFIG) under non-ideal grid Discusses basic concepts of DFIG wind power system and vector control schemes of DFIG Introduces control strategies under a non-ideal grid Includes case studies and simulation and experimental results Advanced Control of Doubly Fed Induction Generator for Wind Power Systems is an ideal book for graduate students studying renewable energy and power electronics as well as for research and development engineers working with wind power converters.

Doubly Fed Induction Generators

Doubly Fed Induction Generators PDF Author: Edgar N. Sanchez
Publisher: CRC Press
ISBN: 1315351730
Category : Technology & Engineering
Languages : en
Pages : 133

Get Book Here

Book Description
Doubly Fed Induction Generators: Control for Wind Energy provides a detailed source of information on the modeling and design of controllers for the doubly fed induction generator (DFIG) used in wind energy applications. Focusing on the use of nonlinear control techniques, this book: Discusses the main features and advantages of the DFIG Describes key theoretical fundamentals and the DFIG mathematical model Develops controllers using inverse optimal control, sliding modes, and neural networks Devises an improvement to add robustness in the presence of parametric variations Details the results of real-time implementations All controllers presented in the book are tested in a laboratory prototype. Comparisons between the controllers are made by analyzing statistical measures applied to the control objectives.

Control Design and Analysis of Doubly-fed Induction Generator in Wind Power Application

Control Design and Analysis of Doubly-fed Induction Generator in Wind Power Application PDF Author: Shukul Mazari
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 92

Get Book Here

Book Description
The work presented in this thesis includes control system design, analysis and grid synchronization of a DFIG (doubly-fed induction generator) driven by a wind turbine using stator-voltage and stator-flux oriented frames. The DFIG is a special type of induction machine which is comprised of two back-to-back converters. One converter connects the DFIG stator to the grid, and the second converter is connected to the rotor of the machine through a DC-link capacitor. In this work, DFIG steady-state and transient models have been created in the d-q reference frame. The steady-state model is used to obtain the relationship between the rotor d-q currents and stator real/reactive power references in a particular orientation frame. The transient model is used to develop the DFIG power control mechanisms. The wind turbine driving torque is modeled by considering typical wind turbine aerodynamic characteristics under variable wind and pitch angle conditions. Comparisons are made to evaluate the differences between DFIG current/power controller in stator-voltage and stator-flux oriented frames. A speed control system has been designed to analyze maximum energy extraction from a DFIG for a particular wind speed. Lastly, the grid synchronization control technique and synchronization method have been proposed as this system requires some care during the machine start-up and integration with the grid. The main aim of the synchronization control process is to avoid heavy start-up currents and mechanical stresses on the turbine shaft and other integrated components. This is achieved by properly matching the phase angle, frequency, and magnitude of the grid voltage and the stator induced voltage irrespective of whether it is a stator-voltage or stator-flux oriented frame used for modeling the generator. Instead of a traditional control scheme using a PLL (phase-locked loop), the rotor d-q reference current is generated with grid voltage as the reference so as to induce identical voltage in the stator as that of the grid. The machine is started by a driving torque and the switch between stator and the grid can be closed for synchronization. However, appropriate timing of switch closure plays a critical role in satisfying the magnitude condition of synchronization. Simulation models have been developed using Matlab®/Simulink® for a GE 1.5 MW generator.

A Novel Robust Control and Fault Ride Through for Wind Turbines with Doubly Fed Induction Generator Operating in Weak Grids

A Novel Robust Control and Fault Ride Through for Wind Turbines with Doubly Fed Induction Generator Operating in Weak Grids PDF Author: Manoj Rathi
Publisher:
ISBN:
Category :
Languages : en
Pages : 250

Get Book Here

Book Description


A Novel Control Scheme for a Doubly-fed Induction Wind Generator Under Unblanced Grid Voltage Conditions

A Novel Control Scheme for a Doubly-fed Induction Wind Generator Under Unblanced Grid Voltage Conditions PDF Author: Ted Kermit Anderson Brekken
Publisher:
ISBN:
Category :
Languages : en
Pages : 298

Get Book Here

Book Description


Robust Control Techniques for DFIG Driven WECS with Improved Efficiency

Robust Control Techniques for DFIG Driven WECS with Improved Efficiency PDF Author: Ifte Khairul Amin
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Wind energy has emerged as one of the fastest growing renewable energy sources since mid-80's due to its low cost and environmentally friendly nature compared to conventional fossil fuel based power generation. Current technologies for the design and implementation of wind energy conversion systems (WECSs) include induction generator and synchronous generator based units. The doubly fed induction generator (DFIG) is chosen in this thesis because of its economic operation, ability to regulate in sub-synchronous or super-synchronous speed and decoupled control of active and reactive powers. Among the major challenges of wind energy conversion system, extraction of maximum power from intermittent generation and supervision on nonlinear system dynamics of DFIG-WECS are of critical importance. Maximization of the power produced by wind turbine is possible by optimizing tip-speed ratio (TSR), turbine rotor speed or torque and blade angle. The literature reports that a vast number of investigations have been conducted on the maximum power point tracking (MPPT) of wind turbines. Among the reported MPPT control algorithms, the hill climb search (HCS) method is typically preferred because of its simple implementation and turbine parameter-independent scheme. Since the conventional HCS algorithm has few drawbacks such as power fluctuation and speed-efficiency trade-off, a new adaptive step size based HCS controller is developed in this thesis to mitigate its deficiencies by incorporating wind speed measurement in the controller. In addition, a common practice of using linear state-feedback controllers is prevalent in speed and current control of DFIG-based WECS. Traditional feedback linearization controllers are sensitive to system parameter variations and disturbances on grid-connected WECS, which demands advanced control techniques for stable and efficient performance considering the nonlinear system dynamics. An adaptive backstepping based nonlinear control (ABNC) scheme with iron-loss minimization algorithm for RSC control of DFIG is developed in this research work to obtain improved dynamic performance and reduced power loss. The performance of the proposed controller is tested and compared with the benchmark tuned proportional-integral (PI) controller under different operating conditions including variable wind speed, grid voltage disturbance and parameter uncertainties. Test results demonstrate that the proposed method exhibits excellent performance on the rotor side and grid side converter control. In addition, the compliance with the modern grid-code requirements is achieved by featuring a novel controller with disturbance rejection mechanism. In order to reduce the dependency on system's mathematical model, a low computational adaptive network fuzzy interference system (ANFIS) based neuro-fuzzy logic controller (NFC) scheme is developed for DFIG based WECS. The performance of the proposed NFC based DFIG-WECS is tested in simulation to regulate both grid and rotor side converters under normal and voltage dip conditions. Furthermore, a new optimization technique known as grey wolf optimization (GWO) is also designed to regulate the battery power for DFIG driven wind energy system operating in standalone mode. In order to verify the effectiveness of the proposed control schemes, simulation models are designed using Matlab/Simulink. The proposed model for MPPT and nonlinear control of grid-connected mode and GWO based power control of standalone DFIG-WECS has been successfully implemented in the real-time environment using DSP controller board DS1104 for a laboratory 480 VA DFIG. The comparison among different controllers suggests that each control technique has its own specialty in wind power control application with specific merits and shortcomings. However, the PI controller provides fast convergence, the ANFIS based NFC controller has better adaptability under grid disturbances and ABNC has moderate performance. Overall, the thesis provides a detailed overview of different robust control techniques for DFIG driven WECS in grid-connected and standalone operation mode with practical implementation.