Author: Chang-Hwan Choi
Publisher: John Wiley & Sons
ISBN: 1119640504
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.
Ice Adhesion
Author: Chang-Hwan Choi
Publisher: John Wiley & Sons
ISBN: 1119640504
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.
Publisher: John Wiley & Sons
ISBN: 1119640504
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.
Handbook of Phase Change
Author: S.G. Kandlikar
Publisher: Routledge
ISBN: 1351442198
Category : Science
Languages : en
Pages : 786
Book Description
Provides a comprehensive coverage of the basic phenomena. It contains twenty-five chapters which cover different aspects of boiling and condensation. First the specific topic or phenomenon is described, followed by a brief survey of previous work, a phenomenological model based on current understanding, and finally a set of recommended design equa
Publisher: Routledge
ISBN: 1351442198
Category : Science
Languages : en
Pages : 786
Book Description
Provides a comprehensive coverage of the basic phenomena. It contains twenty-five chapters which cover different aspects of boiling and condensation. First the specific topic or phenomenon is described, followed by a brief survey of previous work, a phenomenological model based on current understanding, and finally a set of recommended design equa
Bioinspired Design of Materials Surfaces
Author: Yongmei Zheng
Publisher: Elsevier
ISBN: 0128148438
Category : Technology & Engineering
Languages : en
Pages : 340
Book Description
Bioinspired Design of Materials Surfaces reviews novel methods and technologies used to design surfaces and materials for smart material and device applications. The author discusses how materials wettability can be impacted by the fabrication of micro- and nanostructures, anisotropic structures, gradient structures, and heterogeneous patterned structures on the surfaces of materials. The design of these structures was inspired by nature, including lotus, cactus, beetle back and butterfly wings, spider silk, and shells. The author reviews the various wettability functions that can result from these designs, such as self-cleaning, directional adhesion, droplet driving, anti-adhesion, non-wetting, liquid repellent properties, liquid separation, liquid splitting, and more. This book presents a key reference on how to fabricate bioinspired structures on materials for desired functions of materials wettability. It also discusses challenges, opportunities and many potential applications, such as oil-water separation devices, water harvesting devices and photonic device applications.
Publisher: Elsevier
ISBN: 0128148438
Category : Technology & Engineering
Languages : en
Pages : 340
Book Description
Bioinspired Design of Materials Surfaces reviews novel methods and technologies used to design surfaces and materials for smart material and device applications. The author discusses how materials wettability can be impacted by the fabrication of micro- and nanostructures, anisotropic structures, gradient structures, and heterogeneous patterned structures on the surfaces of materials. The design of these structures was inspired by nature, including lotus, cactus, beetle back and butterfly wings, spider silk, and shells. The author reviews the various wettability functions that can result from these designs, such as self-cleaning, directional adhesion, droplet driving, anti-adhesion, non-wetting, liquid repellent properties, liquid separation, liquid splitting, and more. This book presents a key reference on how to fabricate bioinspired structures on materials for desired functions of materials wettability. It also discusses challenges, opportunities and many potential applications, such as oil-water separation devices, water harvesting devices and photonic device applications.
Advances in Coatings Deposition and Characterization
Author: MDPI
Publisher: MDPI
ISBN: 3039217380
Category : Technology & Engineering
Languages : en
Pages : 196
Book Description
Coatings offer the unique opportunity to create architectures that combine the functionality of two or more materials, conferring unique properties to objects with an extremely large palette of solutions. For this flexibility, thick and thin films have terrific impacts on the most relevant societal challenges. Computers, food packaging, airplanes, and cars, to mention a few familiar objects from everyday life, rely heavily on coatings. To celebrate the key role that coatings have in society, and in science and technology, this book collects a selection of relevant reviews and original research articles published in “Coatings” in 2017 and 2018. Papers have been selected based on their broad impact and balancing between the two major aspects of coatings science and technology: deposition and characterization.
Publisher: MDPI
ISBN: 3039217380
Category : Technology & Engineering
Languages : en
Pages : 196
Book Description
Coatings offer the unique opportunity to create architectures that combine the functionality of two or more materials, conferring unique properties to objects with an extremely large palette of solutions. For this flexibility, thick and thin films have terrific impacts on the most relevant societal challenges. Computers, food packaging, airplanes, and cars, to mention a few familiar objects from everyday life, rely heavily on coatings. To celebrate the key role that coatings have in society, and in science and technology, this book collects a selection of relevant reviews and original research articles published in “Coatings” in 2017 and 2018. Papers have been selected based on their broad impact and balancing between the two major aspects of coatings science and technology: deposition and characterization.
Icephobic Materials for Anti/De-icing Technologies
Author: Yizhou Shen
Publisher: Springer Nature
ISBN: 9819762936
Category :
Languages : en
Pages : 524
Book Description
Publisher: Springer Nature
ISBN: 9819762936
Category :
Languages : en
Pages : 524
Book Description
Ice Adhesion
Author: K. L. Mittal
Publisher: John Wiley & Sons
ISBN: 1119640377
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.
Publisher: John Wiley & Sons
ISBN: 1119640377
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.
21st Century Surface Science
Author: Phuong Pham
Publisher: BoD – Books on Demand
ISBN: 1789851998
Category : Technology & Engineering
Languages : en
Pages : 295
Book Description
Surface sciences elucidate the physical and chemical aspects of the surfaces and interfaces of materials. Of great interest in this field are nanomaterials, which have recently experienced breakthroughs in synthesis and application. As such, this book presents some recent representative achievements in the field of surface science, including synthesis techniques, surface modifications, nanoparticle-based smart coatings, wettability of different surfaces, physics/chemistry characterizations, and growth kinetics of thin films. In addition, the book illustrates some of the important applications related to silicon, CVD graphene, graphene oxide, transition metal dichalcogenides, carbon nanotubes, carbon nanoparticles, transparent conducting oxide, and metal oxides.
Publisher: BoD – Books on Demand
ISBN: 1789851998
Category : Technology & Engineering
Languages : en
Pages : 295
Book Description
Surface sciences elucidate the physical and chemical aspects of the surfaces and interfaces of materials. Of great interest in this field are nanomaterials, which have recently experienced breakthroughs in synthesis and application. As such, this book presents some recent representative achievements in the field of surface science, including synthesis techniques, surface modifications, nanoparticle-based smart coatings, wettability of different surfaces, physics/chemistry characterizations, and growth kinetics of thin films. In addition, the book illustrates some of the important applications related to silicon, CVD graphene, graphene oxide, transition metal dichalcogenides, carbon nanotubes, carbon nanoparticles, transparent conducting oxide, and metal oxides.
Principles and Practice of Variable Pressure / Environmental Scanning Electron Microscopy (VP-ESEM)
Author: Debbie Stokes
Publisher: John Wiley & Sons
ISBN: 0470065400
Category : Science
Languages : en
Pages : 247
Book Description
Offers a simple starting point to VPSEM, especially for new users, technicians and students containing clear, concise explanations Crucially, the principles and applications outlined in this book are completely generic: i.e. applicable to all types of VPSEM, irrespective of manufacturer. Information presented will enable reader to turn principles into practice Published in association with the Royal Microscopical Society (RMS) -www.rms.org.uk
Publisher: John Wiley & Sons
ISBN: 0470065400
Category : Science
Languages : en
Pages : 247
Book Description
Offers a simple starting point to VPSEM, especially for new users, technicians and students containing clear, concise explanations Crucially, the principles and applications outlined in this book are completely generic: i.e. applicable to all types of VPSEM, irrespective of manufacturer. Information presented will enable reader to turn principles into practice Published in association with the Royal Microscopical Society (RMS) -www.rms.org.uk
Bio-inspired Surfaces And Applications
Author: Yuehao Luo
Publisher: World Scientific
ISBN: 9814704504
Category : Technology & Engineering
Languages : en
Pages : 599
Book Description
Through millions of years' natural selection, sharkskin has developed into a kind of drag-reducing surface. This book shows how to investigate, model, fabricate and apply sharkskin's unique surface properties, creating a flexible platform for surface and materials engineers and scientists to readily adopt or adapt for their own bio-inspired materials.Rather than inundate the reader with too many examples of materials inspired by nature, sharkskin has been chosen as the center-piece to illustrate accurate 3D digital modeling of surfaces, complete numerical simulation of micro flow field, different fabrication methods, and application to natural gas pipelining. This is a must-read for any researcher or engineer involved in bio-inspired surfaces and materials studies.
Publisher: World Scientific
ISBN: 9814704504
Category : Technology & Engineering
Languages : en
Pages : 599
Book Description
Through millions of years' natural selection, sharkskin has developed into a kind of drag-reducing surface. This book shows how to investigate, model, fabricate and apply sharkskin's unique surface properties, creating a flexible platform for surface and materials engineers and scientists to readily adopt or adapt for their own bio-inspired materials.Rather than inundate the reader with too many examples of materials inspired by nature, sharkskin has been chosen as the center-piece to illustrate accurate 3D digital modeling of surfaces, complete numerical simulation of micro flow field, different fabrication methods, and application to natural gas pipelining. This is a must-read for any researcher or engineer involved in bio-inspired surfaces and materials studies.
Bioinspired Engineering of Thermal Materials
Author: Tao Deng
Publisher: John Wiley & Sons
ISBN: 3527338349
Category : Technology & Engineering
Languages : en
Pages : 274
Book Description
A comprehensive overview and summary of recent achievements and the latest trends in bioinspired thermal materials. Following an introduction to different thermal materials and their effective heat transfer to other materials, the text discusses heat detection materials that are inspired by biological systems, such as fire beetles and butterflies. There then follow descriptions of materials with thermal management functionality, including those for evaporation and condensation, heat transfer and thermal insulation materials, as modeled on snake skins, polar bears and fire-resistant trees. A discussion of thermoresponsive materials with thermally switchable surfaces and controllable nanochannels as well as those with high thermal conductivity and piezoelectric sensors is rounded off by a look toward future trends in the bioinspired engineering of thermal materials. Straightforward and well structured, this is an essential reference for newcomers as well as experienced researchers in this exciting field.
Publisher: John Wiley & Sons
ISBN: 3527338349
Category : Technology & Engineering
Languages : en
Pages : 274
Book Description
A comprehensive overview and summary of recent achievements and the latest trends in bioinspired thermal materials. Following an introduction to different thermal materials and their effective heat transfer to other materials, the text discusses heat detection materials that are inspired by biological systems, such as fire beetles and butterflies. There then follow descriptions of materials with thermal management functionality, including those for evaporation and condensation, heat transfer and thermal insulation materials, as modeled on snake skins, polar bears and fire-resistant trees. A discussion of thermoresponsive materials with thermally switchable surfaces and controllable nanochannels as well as those with high thermal conductivity and piezoelectric sensors is rounded off by a look toward future trends in the bioinspired engineering of thermal materials. Straightforward and well structured, this is an essential reference for newcomers as well as experienced researchers in this exciting field.