Author: C. A. Swanson
Publisher: Elsevier
ISBN: 1483266672
Category : Mathematics
Languages : en
Pages : 238
Book Description
Mathematics in Science and Engineering, Volume 48: Comparison and Oscillation Theory of Linear Differential Equations deals primarily with the zeros of solutions of linear differential equations. This volume contains five chapters. Chapter 1 focuses on comparison theorems for second order equations, while Chapter 2 treats oscillation and nonoscillation theorems for second order equations. Separation, comparison, and oscillation theorems for fourth order equations are covered in Chapter 3. In Chapter 4, ordinary equations and systems of differential equations are reviewed. The last chapter discusses the result of the first analog of a Sturm-type comparison theorem for an elliptic partial differential equation. This publication is intended for college seniors or beginning graduate students who are well-acquainted with advanced calculus, complex analysis, linear algebra, and linear differential equations.
Comparison and Oscillation Theory of Linear Differential Equations
Author: C. A. Swanson
Publisher: Elsevier
ISBN: 1483266672
Category : Mathematics
Languages : en
Pages : 238
Book Description
Mathematics in Science and Engineering, Volume 48: Comparison and Oscillation Theory of Linear Differential Equations deals primarily with the zeros of solutions of linear differential equations. This volume contains five chapters. Chapter 1 focuses on comparison theorems for second order equations, while Chapter 2 treats oscillation and nonoscillation theorems for second order equations. Separation, comparison, and oscillation theorems for fourth order equations are covered in Chapter 3. In Chapter 4, ordinary equations and systems of differential equations are reviewed. The last chapter discusses the result of the first analog of a Sturm-type comparison theorem for an elliptic partial differential equation. This publication is intended for college seniors or beginning graduate students who are well-acquainted with advanced calculus, complex analysis, linear algebra, and linear differential equations.
Publisher: Elsevier
ISBN: 1483266672
Category : Mathematics
Languages : en
Pages : 238
Book Description
Mathematics in Science and Engineering, Volume 48: Comparison and Oscillation Theory of Linear Differential Equations deals primarily with the zeros of solutions of linear differential equations. This volume contains five chapters. Chapter 1 focuses on comparison theorems for second order equations, while Chapter 2 treats oscillation and nonoscillation theorems for second order equations. Separation, comparison, and oscillation theorems for fourth order equations are covered in Chapter 3. In Chapter 4, ordinary equations and systems of differential equations are reviewed. The last chapter discusses the result of the first analog of a Sturm-type comparison theorem for an elliptic partial differential equation. This publication is intended for college seniors or beginning graduate students who are well-acquainted with advanced calculus, complex analysis, linear algebra, and linear differential equations.
Oscillation Theory of Two-Term Differential Equations
Author: Uri Elias
Publisher: Springer Science & Business Media
ISBN: 9401725179
Category : Mathematics
Languages : en
Pages : 232
Book Description
Oscillation theory was born with Sturm's work in 1836. It has been flourishing for the past fifty years. Nowadays it is a full, self-contained discipline, turning more towards nonlinear and functional differential equations. Oscillation theory flows along two main streams. The first aims to study prop erties which are common to all linear differential equations. The other restricts its area of interest to certain families of equations and studies in maximal details phenomena which characterize only those equations. Among them we find third and fourth order equations, self adjoint equations, etc. Our work belongs to the second type and considers two term linear equations modeled after y(n) + p(x)y = O. More generally, we investigate LnY + p(x)y = 0, where Ln is a disconjugate operator and p(x) has a fixed sign. These equations enjoy a very rich structure and are the natural generalization of the Sturm-Liouville operator. Results about such equations are distributed over hundreds of research papers, many of them are reinvented again and again and the same phenomenon is frequently discussed from various points of view and different definitions of the authors. Our aim is to introduce an order into this plenty and arrange it in a unified and self contained way. The results are readapted and presented in a unified approach. In many cases completely new proofs are given and in no case is the original proof copied verbatim. Many new results are included.
Publisher: Springer Science & Business Media
ISBN: 9401725179
Category : Mathematics
Languages : en
Pages : 232
Book Description
Oscillation theory was born with Sturm's work in 1836. It has been flourishing for the past fifty years. Nowadays it is a full, self-contained discipline, turning more towards nonlinear and functional differential equations. Oscillation theory flows along two main streams. The first aims to study prop erties which are common to all linear differential equations. The other restricts its area of interest to certain families of equations and studies in maximal details phenomena which characterize only those equations. Among them we find third and fourth order equations, self adjoint equations, etc. Our work belongs to the second type and considers two term linear equations modeled after y(n) + p(x)y = O. More generally, we investigate LnY + p(x)y = 0, where Ln is a disconjugate operator and p(x) has a fixed sign. These equations enjoy a very rich structure and are the natural generalization of the Sturm-Liouville operator. Results about such equations are distributed over hundreds of research papers, many of them are reinvented again and again and the same phenomenon is frequently discussed from various points of view and different definitions of the authors. Our aim is to introduce an order into this plenty and arrange it in a unified and self contained way. The results are readapted and presented in a unified approach. In many cases completely new proofs are given and in no case is the original proof copied verbatim. Many new results are included.
Half-Linear Differential Equations
Author: Ondrej Dosly
Publisher: Elsevier
ISBN: 0080461239
Category : Mathematics
Languages : en
Pages : 533
Book Description
The book presents a systematic and compact treatment of the qualitative theory of half-lineardifferential equations. It contains the most updated and comprehensive material and represents the first attempt to present the results of the rapidly developing theory of half-linear differential equations in a unified form. The main topics covered by the book are oscillation and asymptotic theory and the theory of boundary value problems associated with half-linear equations, but the book also contains a treatment of related topics like PDE's with p-Laplacian, half-linear difference equations and various more general nonlinear differential equations.- The first complete treatment of the qualitative theory of half-linear differential equations.- Comparison of linear and half-linear theory.- Systematic approach to half-linear oscillation and asymptotic theory.- Comprehensive bibliography and index.- Useful as a reference book in the topic.
Publisher: Elsevier
ISBN: 0080461239
Category : Mathematics
Languages : en
Pages : 533
Book Description
The book presents a systematic and compact treatment of the qualitative theory of half-lineardifferential equations. It contains the most updated and comprehensive material and represents the first attempt to present the results of the rapidly developing theory of half-linear differential equations in a unified form. The main topics covered by the book are oscillation and asymptotic theory and the theory of boundary value problems associated with half-linear equations, but the book also contains a treatment of related topics like PDE's with p-Laplacian, half-linear difference equations and various more general nonlinear differential equations.- The first complete treatment of the qualitative theory of half-linear differential equations.- Comparison of linear and half-linear theory.- Systematic approach to half-linear oscillation and asymptotic theory.- Comprehensive bibliography and index.- Useful as a reference book in the topic.
Oscillation Theory for Difference and Functional Differential Equations
Author: R.P. Agarwal
Publisher: Springer Science & Business Media
ISBN: 9401594015
Category : Mathematics
Languages : en
Pages : 344
Book Description
This monograph is devoted to a rapidly developing area of research of the qualitative theory of difference and functional differential equations. In fact, in the last 25 years Oscillation Theory of difference and functional differential equations has attracted many researchers. This has resulted in hundreds of research papers in every major mathematical journal, and several books. In the first chapter of this monograph, we address oscillation of solutions to difference equations of various types. Here we also offer several new fundamental concepts such as oscillation around a point, oscillation around a sequence, regular oscillation, periodic oscillation, point-wise oscillation of several orthogonal polynomials, global oscillation of sequences of real valued functions, oscillation in ordered sets, (!, R, ~)-oscillate, oscillation in linear spaces, oscillation in Archimedean spaces, and oscillation across a family. These concepts are explained through examples and supported by interesting results. In the second chapter we present recent results pertaining to the oscil lation of n-th order functional differential equations with deviating argu ments, and functional differential equations of neutral type. We mainly deal with integral criteria for oscillation. While several results of this chapter were originally formulated for more complicated and/or more general differ ential equations, we discuss here a simplified version to elucidate the main ideas of the oscillation theory of functional differential equations. Further, from a large number of theorems presented in this chapter we have selected the proofs of only those results which we thought would best illustrate the various strategies and ideas involved.
Publisher: Springer Science & Business Media
ISBN: 9401594015
Category : Mathematics
Languages : en
Pages : 344
Book Description
This monograph is devoted to a rapidly developing area of research of the qualitative theory of difference and functional differential equations. In fact, in the last 25 years Oscillation Theory of difference and functional differential equations has attracted many researchers. This has resulted in hundreds of research papers in every major mathematical journal, and several books. In the first chapter of this monograph, we address oscillation of solutions to difference equations of various types. Here we also offer several new fundamental concepts such as oscillation around a point, oscillation around a sequence, regular oscillation, periodic oscillation, point-wise oscillation of several orthogonal polynomials, global oscillation of sequences of real valued functions, oscillation in ordered sets, (!, R, ~)-oscillate, oscillation in linear spaces, oscillation in Archimedean spaces, and oscillation across a family. These concepts are explained through examples and supported by interesting results. In the second chapter we present recent results pertaining to the oscil lation of n-th order functional differential equations with deviating argu ments, and functional differential equations of neutral type. We mainly deal with integral criteria for oscillation. While several results of this chapter were originally formulated for more complicated and/or more general differ ential equations, we discuss here a simplified version to elucidate the main ideas of the oscillation theory of functional differential equations. Further, from a large number of theorems presented in this chapter we have selected the proofs of only those results which we thought would best illustrate the various strategies and ideas involved.
Oscillation Theory for Functional Differential Equations
Author: Lynn Erbe
Publisher: Routledge
ISBN: 135142632X
Category : Mathematics
Languages : en
Pages : 497
Book Description
Examines developments in the oscillatory and nonoscillatory properties of solutions for functional differential equations, presenting basic oscillation theory as well as recent results. The book shows how to extend the techniques for boundary value problems of ordinary differential equations to those of functional differential equations.
Publisher: Routledge
ISBN: 135142632X
Category : Mathematics
Languages : en
Pages : 497
Book Description
Examines developments in the oscillatory and nonoscillatory properties of solutions for functional differential equations, presenting basic oscillation theory as well as recent results. The book shows how to extend the techniques for boundary value problems of ordinary differential equations to those of functional differential equations.
Oscillation Theory for Neutral Differential Equations with Delay
Author: D.D Bainov
Publisher: CRC Press
ISBN: 9780750301428
Category : Mathematics
Languages : en
Pages : 296
Book Description
With neutral differential equations, any lack of smoothness in initial conditions is not damped and so they have proven to be difficult to solve. Until now, there has been little information to help with this problem. Oscillation Theory for Neutral Differential Equations with Delay fills a vacuum in qualitative theory of functional differential equations of neutral type. With much of the presented material previously unavailable outside Eastern Europe, this authoritative book provides a stimulus to research the oscillatory and asymptotic properties of these equations. It examines equations of first, second, and higher orders as well as the asymptotic behavior for tending toward infinity. These results are then generalized for partial differential equations of neutral type. The book also describes the historical development of the field and discusses applications in mathematical models of processes and phenomena in physics, electrical control and engineering, physical chemistry, and mathematical biology. This book is an important tool not only for mathematicians, but also for specialists in many fields including physicists, engineers, and biologists. It may be used as a graduate-level textbook or as a reference book for a wide range of subjects, from radiophysics to electrical and control engineering to biological science.
Publisher: CRC Press
ISBN: 9780750301428
Category : Mathematics
Languages : en
Pages : 296
Book Description
With neutral differential equations, any lack of smoothness in initial conditions is not damped and so they have proven to be difficult to solve. Until now, there has been little information to help with this problem. Oscillation Theory for Neutral Differential Equations with Delay fills a vacuum in qualitative theory of functional differential equations of neutral type. With much of the presented material previously unavailable outside Eastern Europe, this authoritative book provides a stimulus to research the oscillatory and asymptotic properties of these equations. It examines equations of first, second, and higher orders as well as the asymptotic behavior for tending toward infinity. These results are then generalized for partial differential equations of neutral type. The book also describes the historical development of the field and discusses applications in mathematical models of processes and phenomena in physics, electrical control and engineering, physical chemistry, and mathematical biology. This book is an important tool not only for mathematicians, but also for specialists in many fields including physicists, engineers, and biologists. It may be used as a graduate-level textbook or as a reference book for a wide range of subjects, from radiophysics to electrical and control engineering to biological science.
Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations
Author: R.P. Agarwal
Publisher: Springer Science & Business Media
ISBN: 9401725152
Category : Mathematics
Languages : en
Pages : 685
Book Description
In this monograph, the authors present a compact, thorough, systematic, and self-contained oscillation theory for linear, half-linear, superlinear, and sublinear second-order ordinary differential equations. An important feature of this monograph is the illustration of several results with examples of current interest. This book will stimulate further research into oscillation theory. This book is written at a graduate level, and is intended for university libraries, graduate students, and researchers working in the field of ordinary differential equations.
Publisher: Springer Science & Business Media
ISBN: 9401725152
Category : Mathematics
Languages : en
Pages : 685
Book Description
In this monograph, the authors present a compact, thorough, systematic, and self-contained oscillation theory for linear, half-linear, superlinear, and sublinear second-order ordinary differential equations. An important feature of this monograph is the illustration of several results with examples of current interest. This book will stimulate further research into oscillation theory. This book is written at a graduate level, and is intended for university libraries, graduate students, and researchers working in the field of ordinary differential equations.
A Third Order Differential Equation
Author: W. R. Utz
Publisher:
ISBN:
Category : Differential equations, Linear
Languages : en
Pages : 16
Book Description
Publisher:
ISBN:
Category : Differential equations, Linear
Languages : en
Pages : 16
Book Description
Nonoscillation and Oscillation Theory for Functional Differential Equations
Author: Ravi P. Agarwal
Publisher: CRC Press
ISBN: 0203025741
Category : Mathematics
Languages : en
Pages : 392
Book Description
This book summarizes the qualitative theory of differential equations with or without delays, collecting recent oscillation studies important to applications and further developments in mathematics, physics, engineering, and biology. The authors address oscillatory and nonoscillatory properties of first-order delay and neutral delay differential eq
Publisher: CRC Press
ISBN: 0203025741
Category : Mathematics
Languages : en
Pages : 392
Book Description
This book summarizes the qualitative theory of differential equations with or without delays, collecting recent oscillation studies important to applications and further developments in mathematics, physics, engineering, and biology. The authors address oscillatory and nonoscillatory properties of first-order delay and neutral delay differential eq
Sturm-Liouville Theory
Author: Werner O. Amrein
Publisher: Springer Science & Business Media
ISBN: 3764373598
Category : Mathematics
Languages : en
Pages : 348
Book Description
This is a collection of survey articles based on lectures presented at a colloquium and workshop in Geneva in 2003 to commemorate the 200th anniversary of the birth of Charles François Sturm. It aims at giving an overview of the development of Sturm-Liouville theory from its historical roots to present day research. It is the first time that such a comprehensive survey has been made available in compact form. The contributions come from internationally renowned experts and cover a wide range of developments of the theory. The book can therefore serve both as an introduction to Sturm-Liouville theory and as background for ongoing research. The volume is addressed to researchers in related areas, to advanced students and to those interested in the historical development of mathematics. The book will also be of interest to those involved in applications of the theory to diverse areas such as engineering, fluid dynamics and computational spectral analysis.
Publisher: Springer Science & Business Media
ISBN: 3764373598
Category : Mathematics
Languages : en
Pages : 348
Book Description
This is a collection of survey articles based on lectures presented at a colloquium and workshop in Geneva in 2003 to commemorate the 200th anniversary of the birth of Charles François Sturm. It aims at giving an overview of the development of Sturm-Liouville theory from its historical roots to present day research. It is the first time that such a comprehensive survey has been made available in compact form. The contributions come from internationally renowned experts and cover a wide range of developments of the theory. The book can therefore serve both as an introduction to Sturm-Liouville theory and as background for ongoing research. The volume is addressed to researchers in related areas, to advanced students and to those interested in the historical development of mathematics. The book will also be of interest to those involved in applications of the theory to diverse areas such as engineering, fluid dynamics and computational spectral analysis.