Commensurabilities among Lattices in PU (1,n). (AM-132), Volume 132

Commensurabilities among Lattices in PU (1,n). (AM-132), Volume 132 PDF Author: Pierre R. Deligne
Publisher: Princeton University Press
ISBN: 1400882516
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
The first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n-variables. These are treated as an (n+1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n+3 tuples of distinct points on the projective line P modulo, the diagonal section of Auto P=m. For n=1, the characterization may be regarded as a generalization of Riemann's classical theorem characterizing hypergeometric functions by their exponents at three singular points. This characterization permits the authors to compare monodromy groups corresponding to different parameters and to prove commensurability modulo inner automorphisms of PU(1,n). The book includes an investigation of elliptic and parabolic monodromy groups, as well as hyperbolic monodromy groups. The former play a role in the proof that a surprising number of lattices in PU(1,2) constructed as the fundamental groups of compact complex surfaces with constant holomorphic curvature are in fact conjugate to projective monodromy groups of hypergeometric functions. The characterization of hypergeometric-like functions by their exponents at the divisors "at infinity" permits one to prove generalizations in n-variables of the Kummer identities for n-1 involving quadratic and cubic changes of the variable.

Commensurabilities among Lattices in PU (1,n). (AM-132), Volume 132

Commensurabilities among Lattices in PU (1,n). (AM-132), Volume 132 PDF Author: Pierre R. Deligne
Publisher: Princeton University Press
ISBN: 1400882516
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
The first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n-variables. These are treated as an (n+1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n+3 tuples of distinct points on the projective line P modulo, the diagonal section of Auto P=m. For n=1, the characterization may be regarded as a generalization of Riemann's classical theorem characterizing hypergeometric functions by their exponents at three singular points. This characterization permits the authors to compare monodromy groups corresponding to different parameters and to prove commensurability modulo inner automorphisms of PU(1,n). The book includes an investigation of elliptic and parabolic monodromy groups, as well as hyperbolic monodromy groups. The former play a role in the proof that a surprising number of lattices in PU(1,2) constructed as the fundamental groups of compact complex surfaces with constant holomorphic curvature are in fact conjugate to projective monodromy groups of hypergeometric functions. The characterization of hypergeometric-like functions by their exponents at the divisors "at infinity" permits one to prove generalizations in n-variables of the Kummer identities for n-1 involving quadratic and cubic changes of the variable.

Arithmetic and Geometry Around Hypergeometric Functions

Arithmetic and Geometry Around Hypergeometric Functions PDF Author: Rolf-Peter Holzapfel
Publisher: Springer Science & Business Media
ISBN: 3764382848
Category : Mathematics
Languages : en
Pages : 441

Get Book Here

Book Description
This volume comprises lecture notes, survey and research articles originating from the CIMPA Summer School Arithmetic and Geometry around Hypergeometric Functions held at Galatasaray University, Istanbul, June 13-25, 2005. It covers a wide range of topics related to hypergeometric functions, thus giving a broad perspective of the state of the art in the field.

Complex Ball Quotients and Line Arrangements in the Projective Plane (MN-51)

Complex Ball Quotients and Line Arrangements in the Projective Plane (MN-51) PDF Author: Paula Tretkoff
Publisher: Princeton University Press
ISBN: 1400881250
Category : Mathematics
Languages : en
Pages : 229

Get Book Here

Book Description
This book introduces the theory of complex surfaces through a comprehensive look at finite covers of the projective plane branched along line arrangements. Paula Tretkoff emphasizes those finite covers that are free quotients of the complex two-dimensional ball. Tretkoff also includes background on the classical Gauss hypergeometric function of one variable, and a chapter on the Appell two-variable F1 hypergeometric function. The material in this book began as a set of lecture notes, taken by Tretkoff, of a course given by Friedrich Hirzebruch at ETH Zürich in 1996. The lecture notes were then considerably expanded by Hirzebruch and Tretkoff over a number of years. In this book, Tretkoff has expanded those notes even further, still stressing examples offered by finite covers of line arrangements. The book is largely self-contained and foundational material is introduced and explained as needed, but not treated in full detail. References to omitted material are provided for interested readers. Aimed at graduate students and researchers, this is an accessible account of a highly informative area of complex geometry.

In the Tradition of Thurston II

In the Tradition of Thurston II PDF Author: Ken’ichi Ohshika
Publisher: Springer Nature
ISBN: 3030975606
Category : Mathematics
Languages : en
Pages : 525

Get Book Here

Book Description
The purpose of this volume and of the other volumes in the same series is to provide a collection of surveys that allows the reader to learn the important aspects of William Thurston’s heritage. Thurston’s ideas have altered the course of twentieth century mathematics, and they continue to have a significant influence on succeeding generations of mathematicians. The topics covered in the present volume include com-plex hyperbolic Kleinian groups, Möbius structures, hyperbolic ends, cone 3-manifolds, Thurston’s norm, surgeries in representation varieties, triangulations, spaces of polygo-nal decompositions and of singular flat structures on surfaces, combination theorems in the theories of Kleinian groups, hyperbolic groups and holomorphic dynamics, the dynamics and iteration of rational maps, automatic groups, and the combinatorics of right-angled Artin groups.

Dynamics of Discrete Group Action

Dynamics of Discrete Group Action PDF Author: Boris N. Apanasov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110784106
Category : Mathematics
Languages : en
Pages : 534

Get Book Here

Book Description
Provides the first systematic study of geometry and topology of locally symmetric rank one manifolds and dynamics of discrete action of their fundamental groups. In addition to geometry and topology, this study involves several other areas of Mathematics – from algebra of varieties of groups representations and geometric group theory, to geometric analysis including classical questions from function theory.

Advances in the Theory of Numbers

Advances in the Theory of Numbers PDF Author: Ayşe Alaca
Publisher: Springer
ISBN: 1493932012
Category : Mathematics
Languages : en
Pages : 253

Get Book Here

Book Description
The theory of numbers continues to occupy a central place in modern mathematics because of both its long history over many centuries as well as its many diverse applications to other fields such as discrete mathematics, cryptography, and coding theory. The proof by Andrew Wiles (with Richard Taylor) of Fermat’s last theorem published in 1995 illustrates the high level of difficulty of problems encountered in number-theoretic research as well as the usefulness of the new ideas arising from its proof. The thirteenth conference of the Canadian Number Theory Association was held at Carleton University, Ottawa, Ontario, Canada from June 16 to 20, 2014. Ninety-nine talks were presented at the conference on the theme of advances in the theory of numbers. Topics of the talks reflected the diversity of current trends and activities in modern number theory. These topics included modular forms, hypergeometric functions, elliptic curves, distribution of prime numbers, diophantine equations, L-functions, Diophantine approximation, and many more. This volume contains some of the papers presented at the conference. All papers were refereed. The high quality of the articles and their contribution to current research directions make this volume a must for any mathematics library and is particularly relevant to researchers and graduate students with an interest in number theory. The editors hope that this volume will serve as both a resource and an inspiration to future generations of researchers in the theory of numbers.

Modern Dynamical Systems and Applications

Modern Dynamical Systems and Applications PDF Author: Michael Brin
Publisher: Cambridge University Press
ISBN: 9780521840736
Category : Mathematics
Languages : en
Pages : 490

Get Book Here

Book Description
This volume presents a broad collection of current research by leading experts in the theory of dynamical systems.

Hyperbolic Manifolds and Discrete Groups

Hyperbolic Manifolds and Discrete Groups PDF Author: Michael Kapovich
Publisher: Springer Science & Business Media
ISBN: 0817649131
Category : Mathematics
Languages : en
Pages : 486

Get Book Here

Book Description
Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis. The main focus throughout the text is on the "Big Monster," i.e., on Thurston’s hyperbolization theorem, which has not only completely changes the landscape of 3-dimensinal topology and Kleinian group theory but is one of the central results of 3-dimensional topology. The book is fairly self-contained, replete with beautiful illustrations, a rich set of examples of key concepts, numerous exercises, and an extensive bibliography and index. It should serve as an ideal graduate course/seminar text or as a comprehensive reference.

Complex Hyperbolic Geometry

Complex Hyperbolic Geometry PDF Author: William Mark Goldman
Publisher: Oxford University Press
ISBN: 9780198537939
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
This is the first comprehensive treatment of the geometry of complex hyperbolic space, a rich area of research with numerous connections to other branches of mathematics, including Riemannian geometry, complex analysis, symplectic and contact geometry, Lie groups, and harmonic analysis.

Hessian Polyhedra, Invariant Theory And Appell Hypergeometric Functions

Hessian Polyhedra, Invariant Theory And Appell Hypergeometric Functions PDF Author: Lei Yang
Publisher: World Scientific
ISBN: 9813209496
Category : Mathematics
Languages : en
Pages : 317

Get Book Here

Book Description
Our book gives the complex counterpart of Klein's classic book on the icosahedron. We show that the following four apparently disjoint theories: the symmetries of the Hessian polyhedra (geometry), the resolution of some system of algebraic equations (algebra), the system of partial differential equations of Appell hypergeometric functions (analysis) and the modular equation of Picard modular functions (arithmetic) are in fact dominated by the structure of a single object, the Hessian group $mathfrak{G}’_{216}$. It provides another beautiful example on the fundamental unity of mathematics.