Author: Kerrie L. Mengersen
Publisher: Springer Nature
ISBN: 3030425533
Category : Mathematics
Languages : en
Pages : 415
Book Description
Presenting a range of substantive applied problems within Bayesian Statistics along with their Bayesian solutions, this book arises from a research program at CIRM in France in the second semester of 2018, which supported Kerrie Mengersen as a visiting Jean-Morlet Chair and Pierre Pudlo as the local Research Professor. The field of Bayesian statistics has exploded over the past thirty years and is now an established field of research in mathematical statistics and computer science, a key component of data science, and an underpinning methodology in many domains of science, business and social science. Moreover, while remaining naturally entwined, the three arms of Bayesian statistics, namely modelling, computation and inference, have grown into independent research fields. While the research arms of Bayesian statistics continue to grow in many directions, they are harnessed when attention turns to solving substantive applied problems. Each such problem set has its own challenges and hence draws from the suite of research a bespoke solution. The book will be useful for both theoretical and applied statisticians, as well as practitioners, to inspect these solutions in the context of the problems, in order to draw further understanding, awareness and inspiration.
Case Studies in Applied Bayesian Data Science
Case Studies in Bayesian Statistical Modelling and Analysis
Author: Clair L. Alston
Publisher: John Wiley & Sons
ISBN: 9781119941828
Category : Mathematics
Languages : en
Pages : 0
Book Description
Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.
Publisher: John Wiley & Sons
ISBN: 9781119941828
Category : Mathematics
Languages : en
Pages : 0
Book Description
Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.
Case Studies in Bayesian Statistics
Author: Constantine Gatsonis
Publisher: Springer
ISBN: 1461220785
Category : Mathematics
Languages : en
Pages : 384
Book Description
This volume contains invited case studies with the accompanying discussion as well as contributed papers selected by a refereeing process of 6th Workshop on Case Studies in Bayesian Statistics was held at the Carnegie Mellon University in October, 2001.
Publisher: Springer
ISBN: 1461220785
Category : Mathematics
Languages : en
Pages : 384
Book Description
This volume contains invited case studies with the accompanying discussion as well as contributed papers selected by a refereeing process of 6th Workshop on Case Studies in Bayesian Statistics was held at the Carnegie Mellon University in October, 2001.
Bayesian Analysis with R for Drug Development
Author: Harry Yang
Publisher: CRC Press
ISBN: 1351585932
Category : Mathematics
Languages : en
Pages : 251
Book Description
Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development. Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems. Features Provides a single source of information on Bayesian statistics for drug development Covers a wide spectrum of pre-clinical, clinical, and CMC topics Demonstrates proper Bayesian applications using real-life examples Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University. Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.
Publisher: CRC Press
ISBN: 1351585932
Category : Mathematics
Languages : en
Pages : 251
Book Description
Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development. Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems. Features Provides a single source of information on Bayesian statistics for drug development Covers a wide spectrum of pre-clinical, clinical, and CMC topics Demonstrates proper Bayesian applications using real-life examples Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University. Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.
Case Studies in Bayesian Statistics
Author: Constantine Gatsonis
Publisher: Springer Science & Business Media
ISBN: 1461215021
Category : Mathematics
Languages : en
Pages : 436
Book Description
The 4th Workshop on Case Studies in Bayesian Statistics was held at the Car negie Mellon University campus on September 27-28, 1997. As in the past, the workshop featured both invited and contributed case studies. The former were presented and discussed in detail while the latter were presented in poster format. This volume contains the four invited case studies with the accompanying discus sion as well as nine contributed papers selected by a refereeing process. While most of the case studies in the volume come from biomedical research the reader will also find studies in environmental science and marketing research. INVITED PAPERS In Modeling Customer Survey Data, Linda A. Clark, William S. Cleveland, Lorraine Denby, and Chuanhai LiD use hierarchical modeling with time series components in for customer value analysis (CVA) data from Lucent Technologies. The data were derived from surveys of customers of the company and its competi tors, designed to assess relative performance on a spectrum of issues including product and service quality and pricing. The model provides a full description of the CVA data, with random location and scale effects for survey respondents and longitudinal company effects for each attribute. In addition to assessing the performance of specific companies, the model allows the empirical exploration of the conceptual basis of consumer value analysis. The authors place special em phasis on graphical displays for this complex, multivariate set of data and include a wealth of such plots in the paper.
Publisher: Springer Science & Business Media
ISBN: 1461215021
Category : Mathematics
Languages : en
Pages : 436
Book Description
The 4th Workshop on Case Studies in Bayesian Statistics was held at the Car negie Mellon University campus on September 27-28, 1997. As in the past, the workshop featured both invited and contributed case studies. The former were presented and discussed in detail while the latter were presented in poster format. This volume contains the four invited case studies with the accompanying discus sion as well as nine contributed papers selected by a refereeing process. While most of the case studies in the volume come from biomedical research the reader will also find studies in environmental science and marketing research. INVITED PAPERS In Modeling Customer Survey Data, Linda A. Clark, William S. Cleveland, Lorraine Denby, and Chuanhai LiD use hierarchical modeling with time series components in for customer value analysis (CVA) data from Lucent Technologies. The data were derived from surveys of customers of the company and its competi tors, designed to assess relative performance on a spectrum of issues including product and service quality and pricing. The model provides a full description of the CVA data, with random location and scale effects for survey respondents and longitudinal company effects for each attribute. In addition to assessing the performance of specific companies, the model allows the empirical exploration of the conceptual basis of consumer value analysis. The authors place special em phasis on graphical displays for this complex, multivariate set of data and include a wealth of such plots in the paper.
Bayesian Statistics and Marketing
Author: Peter E. Rossi
Publisher: John Wiley & Sons
ISBN: 0470863684
Category : Mathematics
Languages : en
Pages : 368
Book Description
The past decade has seen a dramatic increase in the use of Bayesian methods in marketing due, in part, to computational and modelling breakthroughs, making its implementation ideal for many marketing problems. Bayesian analyses can now be conducted over a wide range of marketing problems, from new product introduction to pricing, and with a wide variety of different data sources. Bayesian Statistics and Marketing describes the basic advantages of the Bayesian approach, detailing the nature of the computational revolution. Examples contained include household and consumer panel data on product purchases and survey data, demand models based on micro-economic theory and random effect models used to pool data among respondents. The book also discusses the theory and practical use of MCMC methods. Written by the leading experts in the field, this unique book: Presents a unified treatment of Bayesian methods in marketing, with common notation and algorithms for estimating the models. Provides a self-contained introduction to Bayesian methods. Includes case studies drawn from the authors’ recent research to illustrate how Bayesian methods can be extended to apply to many important marketing problems. Is accompanied by an R package, bayesm, which implements all of the models and methods in the book and includes many datasets. In addition the book’s website hosts datasets and R code for the case studies. Bayesian Statistics and Marketing provides a platform for researchers in marketing to analyse their data with state-of-the-art methods and develop new models of consumer behaviour. It provides a unified reference for cutting-edge marketing researchers, as well as an invaluable guide to this growing area for both graduate students and professors, alike.
Publisher: John Wiley & Sons
ISBN: 0470863684
Category : Mathematics
Languages : en
Pages : 368
Book Description
The past decade has seen a dramatic increase in the use of Bayesian methods in marketing due, in part, to computational and modelling breakthroughs, making its implementation ideal for many marketing problems. Bayesian analyses can now be conducted over a wide range of marketing problems, from new product introduction to pricing, and with a wide variety of different data sources. Bayesian Statistics and Marketing describes the basic advantages of the Bayesian approach, detailing the nature of the computational revolution. Examples contained include household and consumer panel data on product purchases and survey data, demand models based on micro-economic theory and random effect models used to pool data among respondents. The book also discusses the theory and practical use of MCMC methods. Written by the leading experts in the field, this unique book: Presents a unified treatment of Bayesian methods in marketing, with common notation and algorithms for estimating the models. Provides a self-contained introduction to Bayesian methods. Includes case studies drawn from the authors’ recent research to illustrate how Bayesian methods can be extended to apply to many important marketing problems. Is accompanied by an R package, bayesm, which implements all of the models and methods in the book and includes many datasets. In addition the book’s website hosts datasets and R code for the case studies. Bayesian Statistics and Marketing provides a platform for researchers in marketing to analyse their data with state-of-the-art methods and develop new models of consumer behaviour. It provides a unified reference for cutting-edge marketing researchers, as well as an invaluable guide to this growing area for both graduate students and professors, alike.
Bayesian Analysis Made Simple
Author: Phil Woodward
Publisher: CRC Press
ISBN: 1439839549
Category : Mathematics
Languages : en
Pages : 366
Book Description
Although the popularity of the Bayesian approach to statistics has been growing for years, many still think of it as somewhat esoteric, not focused on practical issues, or generally too difficult to understand. Bayesian Analysis Made Simple is aimed at those who wish to apply Bayesian methods but either are not experts or do not have the time to create WinBUGS code and ancillary files for every analysis they undertake. Accessible to even those who would not routinely use Excel, this book provides a custom-made Excel GUI, immediately useful to those users who want to be able to quickly apply Bayesian methods without being distracted by computing or mathematical issues. From simple NLMs to complex GLMMs and beyond, Bayesian Analysis Made Simple describes how to use Excel for a vast range of Bayesian models in an intuitive manner accessible to the statistically savvy user. Packed with relevant case studies, this book is for any data analyst wishing to apply Bayesian methods to analyze their data, from professional statisticians to statistically aware scientists.
Publisher: CRC Press
ISBN: 1439839549
Category : Mathematics
Languages : en
Pages : 366
Book Description
Although the popularity of the Bayesian approach to statistics has been growing for years, many still think of it as somewhat esoteric, not focused on practical issues, or generally too difficult to understand. Bayesian Analysis Made Simple is aimed at those who wish to apply Bayesian methods but either are not experts or do not have the time to create WinBUGS code and ancillary files for every analysis they undertake. Accessible to even those who would not routinely use Excel, this book provides a custom-made Excel GUI, immediately useful to those users who want to be able to quickly apply Bayesian methods without being distracted by computing or mathematical issues. From simple NLMs to complex GLMMs and beyond, Bayesian Analysis Made Simple describes how to use Excel for a vast range of Bayesian models in an intuitive manner accessible to the statistically savvy user. Packed with relevant case studies, this book is for any data analyst wishing to apply Bayesian methods to analyze their data, from professional statisticians to statistically aware scientists.
Bayesian Statistics
Author: S. James Press
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 264
Book Description
An introduction to Bayesian statistics, with emphasis on interpretation of theory, and application of Bayesian ideas to practical problems. First part covers basic issues and principles, such as subjective probability, Bayesian inference and decision making, the likelihood principle, predictivism, and numerical methods of approximating posterior distributions, and includes a listing of Bayesian computer programs. Second part is devoted to models and applications, including univariate and multivariate regression models, the general linear model, Bayesian classification and discrimination, and a case study of how disputed authorship of some of the Federalist Papers was resolved via Bayesian analysis. Includes biographical material on Thomas Bayes, and a reproduction of Bayes's original essay. Contains exercises.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 264
Book Description
An introduction to Bayesian statistics, with emphasis on interpretation of theory, and application of Bayesian ideas to practical problems. First part covers basic issues and principles, such as subjective probability, Bayesian inference and decision making, the likelihood principle, predictivism, and numerical methods of approximating posterior distributions, and includes a listing of Bayesian computer programs. Second part is devoted to models and applications, including univariate and multivariate regression models, the general linear model, Bayesian classification and discrimination, and a case study of how disputed authorship of some of the Federalist Papers was resolved via Bayesian analysis. Includes biographical material on Thomas Bayes, and a reproduction of Bayes's original essay. Contains exercises.
Case Studies in Bayesian Statistics
Author: Constantine Gatsonis
Publisher: Springer Science & Business Media
ISBN: 9780387986401
Category : Mathematics
Languages : en
Pages : 454
Book Description
The 4th Workshop on Case Studies in Bayesian Statistics was held at the Car negie Mellon University campus on September 27-28, 1997. As in the past, the workshop featured both invited and contributed case studies. The former were presented and discussed in detail while the latter were presented in poster format. This volume contains the four invited case studies with the accompanying discus sion as well as nine contributed papers selected by a refereeing process. While most of the case studies in the volume come from biomedical research the reader will also find studies in environmental science and marketing research. INVITED PAPERS In Modeling Customer Survey Data, Linda A. Clark, William S. Cleveland, Lorraine Denby, and Chuanhai LiD use hierarchical modeling with time series components in for customer value analysis (CVA) data from Lucent Technologies. The data were derived from surveys of customers of the company and its competi tors, designed to assess relative performance on a spectrum of issues including product and service quality and pricing. The model provides a full description of the CVA data, with random location and scale effects for survey respondents and longitudinal company effects for each attribute. In addition to assessing the performance of specific companies, the model allows the empirical exploration of the conceptual basis of consumer value analysis. The authors place special em phasis on graphical displays for this complex, multivariate set of data and include a wealth of such plots in the paper.
Publisher: Springer Science & Business Media
ISBN: 9780387986401
Category : Mathematics
Languages : en
Pages : 454
Book Description
The 4th Workshop on Case Studies in Bayesian Statistics was held at the Car negie Mellon University campus on September 27-28, 1997. As in the past, the workshop featured both invited and contributed case studies. The former were presented and discussed in detail while the latter were presented in poster format. This volume contains the four invited case studies with the accompanying discus sion as well as nine contributed papers selected by a refereeing process. While most of the case studies in the volume come from biomedical research the reader will also find studies in environmental science and marketing research. INVITED PAPERS In Modeling Customer Survey Data, Linda A. Clark, William S. Cleveland, Lorraine Denby, and Chuanhai LiD use hierarchical modeling with time series components in for customer value analysis (CVA) data from Lucent Technologies. The data were derived from surveys of customers of the company and its competi tors, designed to assess relative performance on a spectrum of issues including product and service quality and pricing. The model provides a full description of the CVA data, with random location and scale effects for survey respondents and longitudinal company effects for each attribute. In addition to assessing the performance of specific companies, the model allows the empirical exploration of the conceptual basis of consumer value analysis. The authors place special em phasis on graphical displays for this complex, multivariate set of data and include a wealth of such plots in the paper.
Bayesian Analysis with Stata
Author: John Thompson
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 306
Book Description
Bayesian Analysis with Stata is a compendium of Stata user-written commands for Bayesian analysis.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 306
Book Description
Bayesian Analysis with Stata is a compendium of Stata user-written commands for Bayesian analysis.