Canonical Correlation Analysis of Cointegrated Processes

Canonical Correlation Analysis of Cointegrated Processes PDF Author: Minxian Yang
Publisher:
ISBN:
Category : Correlation (Statistics)
Languages : en
Pages : 50

Get Book Here

Book Description

Canonical Correlation Analysis of Cointegrated Processes

Canonical Correlation Analysis of Cointegrated Processes PDF Author: Minxian Yang
Publisher:
ISBN:
Category : Correlation (Statistics)
Languages : en
Pages : 50

Get Book Here

Book Description


Unit Roots, Cointegration, and Structural Change

Unit Roots, Cointegration, and Structural Change PDF Author: G. S. Maddala
Publisher: Cambridge University Press
ISBN: 9780521587822
Category : Business & Economics
Languages : en
Pages : 528

Get Book Here

Book Description
A comprehensive review of unit roots, cointegration and structural change from a best-selling author.

Multivariate Reduced-Rank Regression

Multivariate Reduced-Rank Regression PDF Author: Raja Velu
Publisher: Springer Science & Business Media
ISBN: 1475728530
Category : Mathematics
Languages : en
Pages : 269

Get Book Here

Book Description
In the area of multivariate analysis, there are two broad themes that have emerged over time. The analysis typically involves exploring the variations in a set of interrelated variables or investigating the simultaneous relation ships between two or more sets of variables. In either case, the themes involve explicit modeling of the relationships or dimension-reduction of the sets of variables. The multivariate regression methodology and its variants are the preferred tools for the parametric modeling and descriptive tools such as principal components or canonical correlations are the tools used for addressing the dimension-reduction issues. Both act as complementary to each other and data analysts typically want to make use of these tools for a thorough analysis of multivariate data. A technique that combines the two broad themes in a natural fashion is the method of reduced-rank regres sion. This method starts with the classical multivariate regression model framework but recognizes the possibility for the reduction in the number of parameters through a restrietion on the rank of the regression coefficient matrix. This feature is attractive because regression methods, whether they are in the context of a single response variable or in the context of several response variables, are popular statistical tools. The technique of reduced rank regression and its encompassing features are the primary focus of this book. The book develops the method of reduced-rank regression starting from the classical multivariate linear regression model.

Multivariate Reduced-Rank Regression

Multivariate Reduced-Rank Regression PDF Author: Gregory C. Reinsel
Publisher: Springer Nature
ISBN: 1071627937
Category : Mathematics
Languages : en
Pages : 420

Get Book Here

Book Description
This book provides an account of multivariate reduced-rank regression, a tool of multivariate analysis that enjoys a broad array of applications. In addition to a historical review of the topic, its connection to other widely used statistical methods, such as multivariate analysis of variance (MANOVA), discriminant analysis, principal components, canonical correlation analysis, and errors-in-variables models, is also discussed. This new edition incorporates Big Data methodology and its applications, as well as high-dimensional reduced-rank regression, generalized reduced-rank regression with complex data, and sparse and low-rank regression methods. Each chapter contains developments of basic theoretical results, as well as details on computational procedures, illustrated with numerical examples drawn from disciplines such as biochemistry, genetics, marketing, and finance. This book is designed for advanced students, practitioners, and researchers, who may deal with moderate and high-dimensional multivariate data. Because regression is one of the most popular statistical methods, the multivariate regression analysis tools described should provide a natural way of looking at large (both cross-sectional and chronological) data sets. This book can be assigned in seminar-type courses taken by advanced graduate students in statistics, machine learning, econometrics, business, and engineering.

Elements of Multivariate Time Series Analysis

Elements of Multivariate Time Series Analysis PDF Author: Gregory C. Reinsel
Publisher: Springer Science & Business Media
ISBN: 9780387406190
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
Now available in paperback, this book introduces basic concepts and methods useful in the analysis and modeling of multivariate time series data. It concentrates on the time-domain analysis of multivariate time series, and assumes univariate time series analysis, while covering basic topics such as stationary processes and their covariance matrix structure, vector AR, MA, and ARMA models, forecasting, least squares and maximum likelihood estimation for ARMA models, associated likelihood ratio testing procedures.

Analysis of Integrated and Cointegrated Time Series with R

Analysis of Integrated and Cointegrated Time Series with R PDF Author: Bernhard Pfaff
Publisher: Springer Science & Business Media
ISBN: 0387759670
Category : Business & Economics
Languages : en
Pages : 193

Get Book Here

Book Description
This book is designed for self study. The reader can apply the theoretical concepts directly within R by following the examples.

Time Series Analysis: Methods and Applications

Time Series Analysis: Methods and Applications PDF Author:
Publisher: Elsevier
ISBN: 0444538631
Category : Mathematics
Languages : en
Pages : 777

Get Book Here

Book Description
The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments.The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. - Comprehensively presents the various aspects of statistical methodology - Discusses a wide variety of diverse applications and recent developments - Contributors are internationally renowened experts in their respective areas

Time Series Analysis: Methods and Applications

Time Series Analysis: Methods and Applications PDF Author: Tata Subba Rao
Publisher: Elsevier
ISBN: 0444538585
Category : Mathematics
Languages : en
Pages : 778

Get Book Here

Book Description
'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.

Statistical Models and Methods for Financial Markets

Statistical Models and Methods for Financial Markets PDF Author: Tze Leung Lai
Publisher: Springer Science & Business Media
ISBN: 0387778268
Category : Business & Economics
Languages : en
Pages : 363

Get Book Here

Book Description
The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.

A Course in Time Series Analysis

A Course in Time Series Analysis PDF Author: Daniel Peña
Publisher: John Wiley & Sons
ISBN: 1118031229
Category : Mathematics
Languages : en
Pages : 494

Get Book Here

Book Description
New statistical methods and future directions of research in time series A Course in Time Series Analysis demonstrates how to build time series models for univariate and multivariate time series data. It brings together material previously available only in the professional literature and presents a unified view of the most advanced procedures available for time series model building. The authors begin with basic concepts in univariate time series, providing an up-to-date presentation of ARIMA models, including the Kalman filter, outlier analysis, automatic methods for building ARIMA models, and signal extraction. They then move on to advanced topics, focusing on heteroscedastic models, nonlinear time series models, Bayesian time series analysis, nonparametric time series analysis, and neural networks. Multivariate time series coverage includes presentations on vector ARMA models, cointegration, and multivariate linear systems. Special features include: Contributions from eleven of the worldâ??s leading figures in time series Shared balance between theory and application Exercise series sets Many real data examples Consistent style and clear, common notation in all contributions 60 helpful graphs and tables Requiring no previous knowledge of the subject, A Course in Time Series Analysis is an important reference and a highly useful resource for researchers and practitioners in statistics, economics, business, engineering, and environmental analysis. An Instructor's Manual presenting detailed solutions to all the problems in he book is available upon request from the Wiley editorial department.