Author: Brajendra K. Sharma
Publisher: MDPI
ISBN: 3039435175
Category : Science
Languages : en
Pages : 166
Book Description
This book provides a collection of research and review articles useful for researchers, engineers, students and industry experts in the bioenergy field. The practical and valuable information can be utilized for developing and implementing renewable energy projects, selecting different waste feedstocks, technologies, and products. A detailed insight into advanced technologies such as hydrothermal liquefaction, torrefaction, and supercritical CO2 extraction for making sustainable biofuels and chemicals is provided. A case study on food waste-to-energy valorization processes in Latin America provides experts’ insights to promote a circular economy.
Byproducts, Waste Biomass and Products to form Green Diesel and Biocrude Oils
Author: Brajendra K. Sharma
Publisher: MDPI
ISBN: 3039435175
Category : Science
Languages : en
Pages : 166
Book Description
This book provides a collection of research and review articles useful for researchers, engineers, students and industry experts in the bioenergy field. The practical and valuable information can be utilized for developing and implementing renewable energy projects, selecting different waste feedstocks, technologies, and products. A detailed insight into advanced technologies such as hydrothermal liquefaction, torrefaction, and supercritical CO2 extraction for making sustainable biofuels and chemicals is provided. A case study on food waste-to-energy valorization processes in Latin America provides experts’ insights to promote a circular economy.
Publisher: MDPI
ISBN: 3039435175
Category : Science
Languages : en
Pages : 166
Book Description
This book provides a collection of research and review articles useful for researchers, engineers, students and industry experts in the bioenergy field. The practical and valuable information can be utilized for developing and implementing renewable energy projects, selecting different waste feedstocks, technologies, and products. A detailed insight into advanced technologies such as hydrothermal liquefaction, torrefaction, and supercritical CO2 extraction for making sustainable biofuels and chemicals is provided. A case study on food waste-to-energy valorization processes in Latin America provides experts’ insights to promote a circular economy.
Green Nanobiotechnology
Author: Atul Thakur
Publisher: CRC Press
ISBN: 1040259464
Category : Science
Languages : en
Pages : 325
Book Description
This book provides a comprehensive exploration of green nanotechnology covering principles, applications, and ethical considerations.Green Nanobiotechnology begins with an introductory exploration of nanotechnology, followed by in-depth discussions on the synthesis of ozone-friendly nanomaterials and the emerging practice of green synthesis. It delves into the diverse applications of green nanoparticles, spanning biomedical applications, tissue engineering, biosensors, antimicrobials, and vaccine development. It explores applications of nanotechnology in environmental sciences including bioremediation, microengineered ceramics for environmental protection, and the modification of advanced nano-polymer composites. The environmental fate and ecotoxicological implications of nanomaterials are thoroughly examined, followed by discussions on the energy-saving potential and sustainable fuel development in the realm of green nanotechnology. The book concludes with a focus on responsible and ethical considerations, addressing the legal, socio-economic, and ethical impacts of nanotechnology, making it an important resource for researchers, academics, and professionals in nanobiotechnology and biomedical sciences.
Publisher: CRC Press
ISBN: 1040259464
Category : Science
Languages : en
Pages : 325
Book Description
This book provides a comprehensive exploration of green nanotechnology covering principles, applications, and ethical considerations.Green Nanobiotechnology begins with an introductory exploration of nanotechnology, followed by in-depth discussions on the synthesis of ozone-friendly nanomaterials and the emerging practice of green synthesis. It delves into the diverse applications of green nanoparticles, spanning biomedical applications, tissue engineering, biosensors, antimicrobials, and vaccine development. It explores applications of nanotechnology in environmental sciences including bioremediation, microengineered ceramics for environmental protection, and the modification of advanced nano-polymer composites. The environmental fate and ecotoxicological implications of nanomaterials are thoroughly examined, followed by discussions on the energy-saving potential and sustainable fuel development in the realm of green nanotechnology. The book concludes with a focus on responsible and ethical considerations, addressing the legal, socio-economic, and ethical impacts of nanotechnology, making it an important resource for researchers, academics, and professionals in nanobiotechnology and biomedical sciences.
Fischer-Tropsch Technology
Author: André Steynberg
Publisher: Elsevier
ISBN: 0080472796
Category : Technology & Engineering
Languages : en
Pages : 722
Book Description
Fischer-Tropsch Technology is a unique book for its state-of-the-art approach to Fischer Tropsch (FT) technology. This book provides an explanation of the basic principles and terminology that are required to understand the application of FT technology. It also contains comprehensive references to patents and previous publications. As the first publication to focus on theory and application, it is a contemporary reference source for students studying chemistry and chemical engineering. Researchers and engineers active in the development of FT technology will also find this book an invaluable source of information. * Is the first publication to cover the theory and application for modern Fischer Tropsch technology * Contains comprehensive knowledge on all aspects relevant to the application of Fischer Tropsch technology* No other publication looks at past, present and future applications
Publisher: Elsevier
ISBN: 0080472796
Category : Technology & Engineering
Languages : en
Pages : 722
Book Description
Fischer-Tropsch Technology is a unique book for its state-of-the-art approach to Fischer Tropsch (FT) technology. This book provides an explanation of the basic principles and terminology that are required to understand the application of FT technology. It also contains comprehensive references to patents and previous publications. As the first publication to focus on theory and application, it is a contemporary reference source for students studying chemistry and chemical engineering. Researchers and engineers active in the development of FT technology will also find this book an invaluable source of information. * Is the first publication to cover the theory and application for modern Fischer Tropsch technology * Contains comprehensive knowledge on all aspects relevant to the application of Fischer Tropsch technology* No other publication looks at past, present and future applications
Sustainable Development of Algal Biofuels in the United States
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309260329
Category : Science
Languages : en
Pages : 247
Book Description
Biofuels made from algae are gaining attention as a domestic source of renewable fuel. However, with current technologies, scaling up production of algal biofuels to meet even 5 percent of U.S. transportation fuel needs could create unsustainable demands for energy, water, and nutrient resources. Continued research and development could yield innovations to address these challenges, but determining if algal biofuel is a viable fuel alternative will involve comparing the environmental, economic and social impacts of algal biofuel production and use to those associated with petroleum-based fuels and other fuel sources. Sustainable Development of Algal Biofuels was produced at the request of the U.S. Department of Energy.
Publisher: National Academies Press
ISBN: 0309260329
Category : Science
Languages : en
Pages : 247
Book Description
Biofuels made from algae are gaining attention as a domestic source of renewable fuel. However, with current technologies, scaling up production of algal biofuels to meet even 5 percent of U.S. transportation fuel needs could create unsustainable demands for energy, water, and nutrient resources. Continued research and development could yield innovations to address these challenges, but determining if algal biofuel is a viable fuel alternative will involve comparing the environmental, economic and social impacts of algal biofuel production and use to those associated with petroleum-based fuels and other fuel sources. Sustainable Development of Algal Biofuels was produced at the request of the U.S. Department of Energy.
Industrial Microbiology and Biotechnology
Author: Pradeep Verma
Publisher: Springer Nature
ISBN: 9819719127
Category :
Languages : en
Pages : 703
Book Description
Publisher: Springer Nature
ISBN: 9819719127
Category :
Languages : en
Pages : 703
Book Description
Negative Emissions Technologies and Reliable Sequestration
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309484529
Category : Science
Languages : en
Pages : 511
Book Description
To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.
Publisher: National Academies Press
ISBN: 0309484529
Category : Science
Languages : en
Pages : 511
Book Description
To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.
Integrated Waste Biorefineries: Achieving Sustainable Development Goals, 2nd edition
Author: Mohammad Rehan
Publisher: Frontiers Media SA
ISBN: 2832542158
Category : Technology & Engineering
Languages : en
Pages : 178
Book Description
The United Nations' Sustainable Development Goals (SDGs) are designed to revolutionize societies to prepare for the future challenges. However, the practical implementation of such goals in many domains is are yet to be achieved despite of unique essence. Sustainable energy production (aligned with SDG 7), clean water and sanitation (aligned with SDG 6), sustainable waste services (aligned with SDG 11), and mitigating climate change impacts (aligned with SDG 13) have been the prime focus of SDGs. Moreover, much attention is being paid to research and development activities on waste prevention, reduction, recycling, and reuse to achieve responsible consumption and production (aligned with SDG 12). Waste biorefineries have emerged as a sustainable environmental management solution to achieve not only the aforementioned SDGs, but also to accomplish no poverty (aligned with SDG 1) and zero hunger (aligned with SDG 2) and to maintain well-being and good health aligned with (SDG 3) and decent work and economic growth (aligned with SDG 8) worldwide. This is true because integrated waste biorefineries can efficiently and sustainably produce fuels, heat, energy, power, and multiple value-added products and chemicals. It can further facilitate the transition from linear to circular economies and mitigate the major challenges faced, including environmental pollution, climate change, and adverse effects on public health. This Research Topic will focus on different types of waste biorefineries, current status, practical implications, optimization of waste-to-energy technologies, detailed life assessment studies, and future opportunities with a vision to achieve SDGs in the areas of sustainable energy generation, waste management, circular economies, and climate change mitigation. The editorial team of this special issue, consisting of world-renowned scientists including Highly Cited Researchers, welcomes submissions of original research articles, review articles, short communications, industrial and/or country/region case studies that covers the following enlisted topics: • Waste biorefineries (e.g., organic waste biorefinery, agricultural and forestry waste biorefinery, etc.) • Integration of different types of biorefineries • Sustainable development goals • Waste to energy technologies • Energy and resource recovery from biomass and other waste • Renewable and sustainable energy systems • Biomass and waste supply chain • Sustainable waste management systems • Mitigation of environmental pollution and climate change • Life cycle assessment • Sustainable circular and bio-based economies.
Publisher: Frontiers Media SA
ISBN: 2832542158
Category : Technology & Engineering
Languages : en
Pages : 178
Book Description
The United Nations' Sustainable Development Goals (SDGs) are designed to revolutionize societies to prepare for the future challenges. However, the practical implementation of such goals in many domains is are yet to be achieved despite of unique essence. Sustainable energy production (aligned with SDG 7), clean water and sanitation (aligned with SDG 6), sustainable waste services (aligned with SDG 11), and mitigating climate change impacts (aligned with SDG 13) have been the prime focus of SDGs. Moreover, much attention is being paid to research and development activities on waste prevention, reduction, recycling, and reuse to achieve responsible consumption and production (aligned with SDG 12). Waste biorefineries have emerged as a sustainable environmental management solution to achieve not only the aforementioned SDGs, but also to accomplish no poverty (aligned with SDG 1) and zero hunger (aligned with SDG 2) and to maintain well-being and good health aligned with (SDG 3) and decent work and economic growth (aligned with SDG 8) worldwide. This is true because integrated waste biorefineries can efficiently and sustainably produce fuels, heat, energy, power, and multiple value-added products and chemicals. It can further facilitate the transition from linear to circular economies and mitigate the major challenges faced, including environmental pollution, climate change, and adverse effects on public health. This Research Topic will focus on different types of waste biorefineries, current status, practical implications, optimization of waste-to-energy technologies, detailed life assessment studies, and future opportunities with a vision to achieve SDGs in the areas of sustainable energy generation, waste management, circular economies, and climate change mitigation. The editorial team of this special issue, consisting of world-renowned scientists including Highly Cited Researchers, welcomes submissions of original research articles, review articles, short communications, industrial and/or country/region case studies that covers the following enlisted topics: • Waste biorefineries (e.g., organic waste biorefinery, agricultural and forestry waste biorefinery, etc.) • Integration of different types of biorefineries • Sustainable development goals • Waste to energy technologies • Energy and resource recovery from biomass and other waste • Renewable and sustainable energy systems • Biomass and waste supply chain • Sustainable waste management systems • Mitigation of environmental pollution and climate change • Life cycle assessment • Sustainable circular and bio-based economies.
Advances in Clean Hydrocarbon Fuel Processing
Author: M. Rashid Khan
Publisher: Elsevier
ISBN: 0857093789
Category : Technology & Engineering
Languages : en
Pages : 577
Book Description
Conventional coal, oil and gas resources used worldwide for power production and transportation are limited and unsustainable. Research and development into clean, alternative hydrocarbon fuels is therefore aimed at improving fuel security through exploring new feedstock conversion techniques, improving production efficiency and reducing environmental impacts.Advances in clean hydrocarbon fuel processing provides a comprehensive and systematic reference on the range of alternative conversion processes and technologies.Following introductory overviews of the feedstocks, environmental issues and life cycle assessment for alternative hydrocarbon fuel processing, sections go on to review solid, liquid and gaseous fuel conversion. Solid fuel coverage includes reviews of liquefaction, gasification, pyrolysis and biomass catalysis. Liquid fuel coverage includes reviews of sulfur removal, partial oxidation and hydroconversion. Gaseous fuel coverage includes reviews of Fischer-Tropsch synthesis, methanol and dimethyl ether production, water-gas shift technology and natural gas hydrate conversion. The final section examines environmental degradation issues in fuel processing plants as well as automation, advanced process control and process modelling techniques for plant optimisationWritten by an international team of expert contributors, Advances in clean hydrocarbon fuel processing provides a valuable reference for fuel processing engineers, industrial petrochemists and energy professionals, as well as for researchers and academics in this field. - A comprehensive reference on the range of alternative conversion processes and technologies - Provides an overview of the feedstocks, environmental issues and life cycle assessments for alternative hydrocarbon fuel processing, including a review of the key issues in solid, liquid and gaseous fuel conversion - Examines automation, advanced process control and process modelling techniques for plant optimisation
Publisher: Elsevier
ISBN: 0857093789
Category : Technology & Engineering
Languages : en
Pages : 577
Book Description
Conventional coal, oil and gas resources used worldwide for power production and transportation are limited and unsustainable. Research and development into clean, alternative hydrocarbon fuels is therefore aimed at improving fuel security through exploring new feedstock conversion techniques, improving production efficiency and reducing environmental impacts.Advances in clean hydrocarbon fuel processing provides a comprehensive and systematic reference on the range of alternative conversion processes and technologies.Following introductory overviews of the feedstocks, environmental issues and life cycle assessment for alternative hydrocarbon fuel processing, sections go on to review solid, liquid and gaseous fuel conversion. Solid fuel coverage includes reviews of liquefaction, gasification, pyrolysis and biomass catalysis. Liquid fuel coverage includes reviews of sulfur removal, partial oxidation and hydroconversion. Gaseous fuel coverage includes reviews of Fischer-Tropsch synthesis, methanol and dimethyl ether production, water-gas shift technology and natural gas hydrate conversion. The final section examines environmental degradation issues in fuel processing plants as well as automation, advanced process control and process modelling techniques for plant optimisationWritten by an international team of expert contributors, Advances in clean hydrocarbon fuel processing provides a valuable reference for fuel processing engineers, industrial petrochemists and energy professionals, as well as for researchers and academics in this field. - A comprehensive reference on the range of alternative conversion processes and technologies - Provides an overview of the feedstocks, environmental issues and life cycle assessments for alternative hydrocarbon fuel processing, including a review of the key issues in solid, liquid and gaseous fuel conversion - Examines automation, advanced process control and process modelling techniques for plant optimisation
Handbook of Biofuels Production
Author: Rafael Luque
Publisher: Woodhead Publishing
ISBN: 0081004567
Category : Technology & Engineering
Languages : en
Pages : 772
Book Description
Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels' production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines. The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives. - Provides systematic and detailed coverage of the processes and technologies being used for biofuel production - Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage - Reviews the production of both first and second generation biofuels - Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks
Publisher: Woodhead Publishing
ISBN: 0081004567
Category : Technology & Engineering
Languages : en
Pages : 772
Book Description
Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels' production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines. The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives. - Provides systematic and detailed coverage of the processes and technologies being used for biofuel production - Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage - Reviews the production of both first and second generation biofuels - Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks
Fundamentals of Thermochemical Biomass Conversion
Author: R.P. Overend
Publisher: Springer Science & Business Media
ISBN: 9400949324
Category : Science
Languages : en
Pages : 1155
Book Description
Throughout the world many projects have been underway to investigate the conversion of renewable biomass into energy and synthetic fuels by thermo chemical methods such as combustion, pyrolysis, gasification and lique faction. While many of these represent prior art used during the early 20th century, the recent decade since the 1970s oil shock has immeasurably increased the knowledge base for such processes. Much of the new knowledge has been gained by persons who were not trained in classical wood chemistry and there have not yet been many attempts to synthesize the knowledge into a corpus of systematic information. To bring this about the International Energy Agency's Forestry Energy collaboration, the Gas Research Institute, the National Research Council of Canada and the US Department of Energy jointly sponsored a conference on the Fundamentals of Thermochemical Biomass Conversion in Estes Park, Colorado which was held on October 18-22, 1982. The Conference, which was structured around invited plenary papers and contributions from researchers, served as the basis for the papers in this volume which reflect the substantial conclusions of the Conference. During the planning for the Conference, it was realized by the editors in their capacity as Co-chairmen that a major problem in biomass research was the lack of reproducibility between reported experiments and their inter comparison on account of the heterogeneity of biomass materials. A well known wood chemist, George M.
Publisher: Springer Science & Business Media
ISBN: 9400949324
Category : Science
Languages : en
Pages : 1155
Book Description
Throughout the world many projects have been underway to investigate the conversion of renewable biomass into energy and synthetic fuels by thermo chemical methods such as combustion, pyrolysis, gasification and lique faction. While many of these represent prior art used during the early 20th century, the recent decade since the 1970s oil shock has immeasurably increased the knowledge base for such processes. Much of the new knowledge has been gained by persons who were not trained in classical wood chemistry and there have not yet been many attempts to synthesize the knowledge into a corpus of systematic information. To bring this about the International Energy Agency's Forestry Energy collaboration, the Gas Research Institute, the National Research Council of Canada and the US Department of Energy jointly sponsored a conference on the Fundamentals of Thermochemical Biomass Conversion in Estes Park, Colorado which was held on October 18-22, 1982. The Conference, which was structured around invited plenary papers and contributions from researchers, served as the basis for the papers in this volume which reflect the substantial conclusions of the Conference. During the planning for the Conference, it was realized by the editors in their capacity as Co-chairmen that a major problem in biomass research was the lack of reproducibility between reported experiments and their inter comparison on account of the heterogeneity of biomass materials. A well known wood chemist, George M.