Author: Da Yan
Publisher: Springer
ISBN: 3319582178
Category : Computers
Languages : en
Pages : 93
Book Description
There has been a surging interest in developing systems for analyzing big graphs generated by real applications, such as online social networks and knowledge graphs. This book aims to help readers get familiar with the computation models of various graph processing systems with minimal time investment. This book is organized into three parts, addressing three popular computation models for big graph analytics: think-like-a-vertex, think-likea- graph, and think-like-a-matrix. While vertex-centric systems have gained great popularity, the latter two models are currently being actively studied to solve graph problems that cannot be efficiently solved in vertex-centric model, and are the promising next-generation models for big graph analytics. For each part, the authors introduce the state-of-the-art systems, emphasizing on both their technical novelties and hands-on experiences of using them. The systems introduced include Giraph, Pregel+, Blogel, GraphLab, CraphChi, X-Stream, Quegel, SystemML, etc. Readers will learn how to design graph algorithms in various graph analytics systems, and how to choose the most appropriate system for a particular application at hand. The target audience for this book include beginners who are interested in using a big graph analytics system, and students, researchers and practitioners who would like to build their own graph analytics systems with new features.
Systems for Big Graph Analytics
Big Graph Analytics Platforms
Author: Da Yan
Publisher:
ISBN:
Category :
Languages : en
Pages : 195
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 195
Book Description
Graph Analysis and Visualization
Author: Richard Brath
Publisher: John Wiley & Sons
ISBN: 1118845870
Category : Computers
Languages : en
Pages : 544
Book Description
Wring more out of the data with a scientific approach to analysis Graph Analysis and Visualization brings graph theory out of the lab and into the real world. Using sophisticated methods and tools that span analysis functions, this guide shows you how to exploit graph and network analytic techniques to enable the discovery of new business insights and opportunities. Published in full color, the book describes the process of creating powerful visualizations using a rich and engaging set of examples from sports, finance, marketing, security, social media, and more. You will find practical guidance toward pattern identification and using various data sources, including Big Data, plus clear instruction on the use of software and programming. The companion website offers data sets, full code examples in Python, and links to all the tools covered in the book. Science has already reaped the benefit of network and graph theory, which has powered breakthroughs in physics, economics, genetics, and more. This book brings those proven techniques into the world of business, finance, strategy, and design, helping extract more information from data and better communicate the results to decision-makers. Study graphical examples of networks using clear and insightful visualizations Analyze specifically-curated, easy-to-use data sets from various industries Learn the software tools and programming languages that extract insights from data Code examples using the popular Python programming language There is a tremendous body of scientific work on network and graph theory, but very little of it directly applies to analyst functions outside of the core sciences – until now. Written for those seeking empirically based, systematic analysis methods and powerful tools that apply outside the lab, Graph Analysis and Visualization is a thorough, authoritative resource.
Publisher: John Wiley & Sons
ISBN: 1118845870
Category : Computers
Languages : en
Pages : 544
Book Description
Wring more out of the data with a scientific approach to analysis Graph Analysis and Visualization brings graph theory out of the lab and into the real world. Using sophisticated methods and tools that span analysis functions, this guide shows you how to exploit graph and network analytic techniques to enable the discovery of new business insights and opportunities. Published in full color, the book describes the process of creating powerful visualizations using a rich and engaging set of examples from sports, finance, marketing, security, social media, and more. You will find practical guidance toward pattern identification and using various data sources, including Big Data, plus clear instruction on the use of software and programming. The companion website offers data sets, full code examples in Python, and links to all the tools covered in the book. Science has already reaped the benefit of network and graph theory, which has powered breakthroughs in physics, economics, genetics, and more. This book brings those proven techniques into the world of business, finance, strategy, and design, helping extract more information from data and better communicate the results to decision-makers. Study graphical examples of networks using clear and insightful visualizations Analyze specifically-curated, easy-to-use data sets from various industries Learn the software tools and programming languages that extract insights from data Code examples using the popular Python programming language There is a tremendous body of scientific work on network and graph theory, but very little of it directly applies to analyst functions outside of the core sciences – until now. Written for those seeking empirically based, systematic analysis methods and powerful tools that apply outside the lab, Graph Analysis and Visualization is a thorough, authoritative resource.
Big Data Analytics
Author: David Loshin
Publisher: Elsevier
ISBN: 0124186645
Category : Computers
Languages : en
Pages : 143
Book Description
Big Data Analytics will assist managers in providing an overview of the drivers for introducing big data technology into the organization and for understanding the types of business problems best suited to big data analytics solutions, understanding the value drivers and benefits, strategic planning, developing a pilot, and eventually planning to integrate back into production within the enterprise. - Guides the reader in assessing the opportunities and value proposition - Overview of big data hardware and software architectures - Presents a variety of technologies and how they fit into the big data ecosystem
Publisher: Elsevier
ISBN: 0124186645
Category : Computers
Languages : en
Pages : 143
Book Description
Big Data Analytics will assist managers in providing an overview of the drivers for introducing big data technology into the organization and for understanding the types of business problems best suited to big data analytics solutions, understanding the value drivers and benefits, strategic planning, developing a pilot, and eventually planning to integrate back into production within the enterprise. - Guides the reader in assessing the opportunities and value proposition - Overview of big data hardware and software architectures - Presents a variety of technologies and how they fit into the big data ecosystem
Data Analytics
Author: Mohiuddin Ahmed
Publisher: CRC Press
ISBN: 0429820917
Category : Computers
Languages : en
Pages : 451
Book Description
Large data sets arriving at every increasing speeds require a new set of efficient data analysis techniques. Data analytics are becoming an essential component for every organization and technologies such as health care, financial trading, Internet of Things, Smart Cities or Cyber Physical Systems. However, these diverse application domains give rise to new research challenges. In this context, the book provides a broad picture on the concepts, techniques, applications, and open research directions in this area. In addition, it serves as a single source of reference for acquiring the knowledge on emerging Big Data Analytics technologies.
Publisher: CRC Press
ISBN: 0429820917
Category : Computers
Languages : en
Pages : 451
Book Description
Large data sets arriving at every increasing speeds require a new set of efficient data analysis techniques. Data analytics are becoming an essential component for every organization and technologies such as health care, financial trading, Internet of Things, Smart Cities or Cyber Physical Systems. However, these diverse application domains give rise to new research challenges. In this context, the book provides a broad picture on the concepts, techniques, applications, and open research directions in this area. In addition, it serves as a single source of reference for acquiring the knowledge on emerging Big Data Analytics technologies.
Graph-Powered Machine Learning
Author: Alessandro Negro
Publisher: Simon and Schuster
ISBN: 163835393X
Category : Computers
Languages : en
Pages : 494
Book Description
Upgrade your machine learning models with graph-based algorithms, the perfect structure for complex and interlinked data. Summary In Graph-Powered Machine Learning, you will learn: The lifecycle of a machine learning project Graphs in big data platforms Data source modeling using graphs Graph-based natural language processing, recommendations, and fraud detection techniques Graph algorithms Working with Neo4J Graph-Powered Machine Learning teaches to use graph-based algorithms and data organization strategies to develop superior machine learning applications. You’ll dive into the role of graphs in machine learning and big data platforms, and take an in-depth look at data source modeling, algorithm design, recommendations, and fraud detection. Explore end-to-end projects that illustrate architectures and help you optimize with best design practices. Author Alessandro Negro’s extensive experience shines through in every chapter, as you learn from examples and concrete scenarios based on his work with real clients! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Identifying relationships is the foundation of machine learning. By recognizing and analyzing the connections in your data, graph-centric algorithms like K-nearest neighbor or PageRank radically improve the effectiveness of ML applications. Graph-based machine learning techniques offer a powerful new perspective for machine learning in social networking, fraud detection, natural language processing, and recommendation systems. About the book Graph-Powered Machine Learning teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative book, you’ll master the architectures and design practices of graphs, and avoid common pitfalls. Author Alessandro Negro explores examples from real-world applications that connect GraphML concepts to real world tasks. What's inside Graphs in big data platforms Recommendations, natural language processing, fraud detection Graph algorithms Working with the Neo4J graph database About the reader For readers comfortable with machine learning basics. About the author Alessandro Negro is Chief Scientist at GraphAware. He has been a speaker at many conferences, and holds a PhD in Computer Science. Table of Contents PART 1 INTRODUCTION 1 Machine learning and graphs: An introduction 2 Graph data engineering 3 Graphs in machine learning applications PART 2 RECOMMENDATIONS 4 Content-based recommendations 5 Collaborative filtering 6 Session-based recommendations 7 Context-aware and hybrid recommendations PART 3 FIGHTING FRAUD 8 Basic approaches to graph-powered fraud detection 9 Proximity-based algorithms 10 Social network analysis against fraud PART 4 TAMING TEXT WITH GRAPHS 11 Graph-based natural language processing 12 Knowledge graphs
Publisher: Simon and Schuster
ISBN: 163835393X
Category : Computers
Languages : en
Pages : 494
Book Description
Upgrade your machine learning models with graph-based algorithms, the perfect structure for complex and interlinked data. Summary In Graph-Powered Machine Learning, you will learn: The lifecycle of a machine learning project Graphs in big data platforms Data source modeling using graphs Graph-based natural language processing, recommendations, and fraud detection techniques Graph algorithms Working with Neo4J Graph-Powered Machine Learning teaches to use graph-based algorithms and data organization strategies to develop superior machine learning applications. You’ll dive into the role of graphs in machine learning and big data platforms, and take an in-depth look at data source modeling, algorithm design, recommendations, and fraud detection. Explore end-to-end projects that illustrate architectures and help you optimize with best design practices. Author Alessandro Negro’s extensive experience shines through in every chapter, as you learn from examples and concrete scenarios based on his work with real clients! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Identifying relationships is the foundation of machine learning. By recognizing and analyzing the connections in your data, graph-centric algorithms like K-nearest neighbor or PageRank radically improve the effectiveness of ML applications. Graph-based machine learning techniques offer a powerful new perspective for machine learning in social networking, fraud detection, natural language processing, and recommendation systems. About the book Graph-Powered Machine Learning teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative book, you’ll master the architectures and design practices of graphs, and avoid common pitfalls. Author Alessandro Negro explores examples from real-world applications that connect GraphML concepts to real world tasks. What's inside Graphs in big data platforms Recommendations, natural language processing, fraud detection Graph algorithms Working with the Neo4J graph database About the reader For readers comfortable with machine learning basics. About the author Alessandro Negro is Chief Scientist at GraphAware. He has been a speaker at many conferences, and holds a PhD in Computer Science. Table of Contents PART 1 INTRODUCTION 1 Machine learning and graphs: An introduction 2 Graph data engineering 3 Graphs in machine learning applications PART 2 RECOMMENDATIONS 4 Content-based recommendations 5 Collaborative filtering 6 Session-based recommendations 7 Context-aware and hybrid recommendations PART 3 FIGHTING FRAUD 8 Basic approaches to graph-powered fraud detection 9 Proximity-based algorithms 10 Social network analysis against fraud PART 4 TAMING TEXT WITH GRAPHS 11 Graph-based natural language processing 12 Knowledge graphs
Knowledge Graphs and Big Data Processing
Author: Valentina Janev
Publisher: Springer Nature
ISBN: 3030531996
Category : Computers
Languages : en
Pages : 212
Book Description
This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.
Publisher: Springer Nature
ISBN: 3030531996
Category : Computers
Languages : en
Pages : 212
Book Description
This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.
Graph Algorithms
Author: Mark Needham
Publisher: "O'Reilly Media, Inc."
ISBN: 1492047635
Category : Computers
Languages : en
Pages : 297
Book Description
Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark
Publisher: "O'Reilly Media, Inc."
ISBN: 1492047635
Category : Computers
Languages : en
Pages : 297
Book Description
Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark
Graph Databases
Author: Christos Tjortjis
Publisher: CRC Press
ISBN: 100099659X
Category : Computers
Languages : en
Pages : 191
Book Description
With social media producing such huge amounts of data, the importance of gathering this rich data, often called "the digital gold rush", processing it and retrieving information is vital. This practical book combines various state-of-the-art tools, technologies and techniques to help us understand Social Media Analytics, Data Mining and Graph Databases, and how to better utilize their potential. Graph Databases: Applications on Social Media Analytics and Smart Cities reviews social media analytics with examples using real-world data. It describes data mining tools for optimal information retrieval; how to crawl and mine data from Twitter; and the advantages of Graph Databases. The book is meant for students, academicians, developers and simple general users involved with Data Science and Graph Databases to understand the notions, concepts, techniques, and tools necessary to extract data from social media, which will aid in better information retrieval, management and prediction.
Publisher: CRC Press
ISBN: 100099659X
Category : Computers
Languages : en
Pages : 191
Book Description
With social media producing such huge amounts of data, the importance of gathering this rich data, often called "the digital gold rush", processing it and retrieving information is vital. This practical book combines various state-of-the-art tools, technologies and techniques to help us understand Social Media Analytics, Data Mining and Graph Databases, and how to better utilize their potential. Graph Databases: Applications on Social Media Analytics and Smart Cities reviews social media analytics with examples using real-world data. It describes data mining tools for optimal information retrieval; how to crawl and mine data from Twitter; and the advantages of Graph Databases. The book is meant for students, academicians, developers and simple general users involved with Data Science and Graph Databases to understand the notions, concepts, techniques, and tools necessary to extract data from social media, which will aid in better information retrieval, management and prediction.
Querying Graphs
Author: Angela Bonifati
Publisher: Springer Nature
ISBN: 3031018648
Category : Computers
Languages : en
Pages : 166
Book Description
Graph data modeling and querying arises in many practical application domains such as social and biological networks where the primary focus is on concepts and their relationships and the rich patterns in these complex webs of interconnectivity. In this book, we present a concise unified view on the basic challenges which arise over the complete life cycle of formulating and processing queries on graph databases. To that purpose, we present all major concepts relevant to this life cycle, formulated in terms of a common and unifying ground: the property graph data model—the pre-dominant data model adopted by modern graph database systems. We aim especially to give a coherent and in-depth perspective on current graph querying and an outlook for future developments. Our presentation is self-contained, covering the relevant topics from: graph data models, graph query languages and graph query specification, graph constraints, and graph query processing. We conclude by indicating major open research challenges towards the next generation of graph data management systems.
Publisher: Springer Nature
ISBN: 3031018648
Category : Computers
Languages : en
Pages : 166
Book Description
Graph data modeling and querying arises in many practical application domains such as social and biological networks where the primary focus is on concepts and their relationships and the rich patterns in these complex webs of interconnectivity. In this book, we present a concise unified view on the basic challenges which arise over the complete life cycle of formulating and processing queries on graph databases. To that purpose, we present all major concepts relevant to this life cycle, formulated in terms of a common and unifying ground: the property graph data model—the pre-dominant data model adopted by modern graph database systems. We aim especially to give a coherent and in-depth perspective on current graph querying and an outlook for future developments. Our presentation is self-contained, covering the relevant topics from: graph data models, graph query languages and graph query specification, graph constraints, and graph query processing. We conclude by indicating major open research challenges towards the next generation of graph data management systems.