Analysis of Impedance Response in Lithium-ion Battery Electrodes

Analysis of Impedance Response in Lithium-ion Battery Electrodes PDF Author: Seongkoo Cho
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A major amount of degradation in battery life is in the form of chemical degradation due to the formation of Solid Electrolyte Interface (SEI) which is a passive film resulting from chemical reaction. Mechanical degradation in the form of fracture formation due to diffusion induced stress can aggravate the aging of the electrode. These mechanisms of deterioration are primary contributors on limiting the durability of Lithium-ion battery (LIB). In addition, an composition of insertion materials such as active material, additive, and binder as well as active particle's morphological heterogeneity can influence solid-state transport, electronic conductivity and hence, battery performance. In this study, virtual 3-D microstructures of LIB electrodes with intercalation particles are designed to describe the influence of microstructure on effective electrical conductivity and the electrochemical impedance. The technique of digital stochastic modeling has been employed for the generation of electrode microstructures consisting of active material, binder, conductive additive and electrolyte. Physicochemical properties for each of the constituent phases have been duly accounted for. Mathematical models have been developed to characterize the electrochemical impedance of LIB electrode. In this work, we demonstrate the coupling of electrode microstructures to the solid state diffusion impedance response in LIB electrodes. This model considers not only the effect of heterogeneity in active particle size on the diffusion impedance response, but also the effect of electrical conductivity, interfacial surface area of the active materials, and volume fraction of the active materials in the porous electrode on the impedance response. In addition, the impact of the morphology of the active materials on the diffusion impedance response through utilization of the characteristic diffusion length of active particles and a Sauter mean particle size has been demonstrated. In order to show the effect of chemical degradation on the impedance response with focus on aging, the Li-ion diffusion inside an active particle is considered along with SEI. Finally, mechanical degradation induced increase in impedance is analyzed by coupling diffusion induced fracture with impedance. These approaches are envisioned to offer a virtual impedance response probing framework to elucidate the influence of electrode microstructural variability and underlying electrochemical and transport interactions. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151935

Analysis of Impedance Response in Lithium-ion Battery Electrodes

Analysis of Impedance Response in Lithium-ion Battery Electrodes PDF Author: Seongkoo Cho
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A major amount of degradation in battery life is in the form of chemical degradation due to the formation of Solid Electrolyte Interface (SEI) which is a passive film resulting from chemical reaction. Mechanical degradation in the form of fracture formation due to diffusion induced stress can aggravate the aging of the electrode. These mechanisms of deterioration are primary contributors on limiting the durability of Lithium-ion battery (LIB). In addition, an composition of insertion materials such as active material, additive, and binder as well as active particle's morphological heterogeneity can influence solid-state transport, electronic conductivity and hence, battery performance. In this study, virtual 3-D microstructures of LIB electrodes with intercalation particles are designed to describe the influence of microstructure on effective electrical conductivity and the electrochemical impedance. The technique of digital stochastic modeling has been employed for the generation of electrode microstructures consisting of active material, binder, conductive additive and electrolyte. Physicochemical properties for each of the constituent phases have been duly accounted for. Mathematical models have been developed to characterize the electrochemical impedance of LIB electrode. In this work, we demonstrate the coupling of electrode microstructures to the solid state diffusion impedance response in LIB electrodes. This model considers not only the effect of heterogeneity in active particle size on the diffusion impedance response, but also the effect of electrical conductivity, interfacial surface area of the active materials, and volume fraction of the active materials in the porous electrode on the impedance response. In addition, the impact of the morphology of the active materials on the diffusion impedance response through utilization of the characteristic diffusion length of active particles and a Sauter mean particle size has been demonstrated. In order to show the effect of chemical degradation on the impedance response with focus on aging, the Li-ion diffusion inside an active particle is considered along with SEI. Finally, mechanical degradation induced increase in impedance is analyzed by coupling diffusion induced fracture with impedance. These approaches are envisioned to offer a virtual impedance response probing framework to elucidate the influence of electrode microstructural variability and underlying electrochemical and transport interactions. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151935

Impedance Spectroscopy

Impedance Spectroscopy PDF Author: Evgenij Barsoukov
Publisher: John Wiley & Sons
ISBN: 1119333180
Category : Science
Languages : en
Pages : 1088

Get Book Here

Book Description
The Essential Reference for the Field, Featuring Protocols, Analysis, Fundamentals, and the Latest Advances Impedance Spectroscopy: Theory, Experiment, and Applications provides a comprehensive reference for graduate students, researchers, and engineers working in electrochemistry, physical chemistry, and physics. Covering both fundamentals concepts and practical applications, this unique reference provides a level of understanding that allows immediate use of impedance spectroscopy methods. Step-by-step experiment protocols with analysis guidance lend immediate relevance to general principles, while extensive figures and equations aid in the understanding of complex concepts. Detailed discussion includes the best measurement methods and identifying sources of error, and theoretical considerations for modeling, equivalent circuits, and equations in the complex domain are provided for most subjects under investigation. Written by a team of expert contributors, this book provides a clear understanding of impedance spectroscopy in general as well as the essential skills needed to use it in specific applications. Extensively updated to reflect the field’s latest advances, this new Third Edition: Incorporates the latest research, and provides coverage of new areas in which impedance spectroscopy is gaining importance Discusses the application of impedance spectroscopy to viscoelastic rubbery materials and biological systems Explores impedance spectroscopy applications in electrochemistry, semiconductors, solid electrolytes, corrosion, solid state devices, and electrochemical power sources Examines both the theoretical and practical aspects, and discusses when impedance spectroscopy is and is not the appropriate solution to an analysis problem Researchers and engineers will find value in the immediate practicality, while students will appreciate the hands-on approach to impedance spectroscopy methods. Retaining the reputation it has gained over years as a primary reference, Impedance Spectroscopy: Theory, Experiment, and Applications once again present a comprehensive reference reflecting the current state of the field.

Physically based Impedance Modelling of Lithium-Ion Cells

Physically based Impedance Modelling of Lithium-Ion Cells PDF Author: Illig, Joerg
Publisher: KIT Scientific Publishing
ISBN: 3731502461
Category : Technology & Engineering
Languages : en
Pages : 231

Get Book Here

Book Description
In this book, a new procedure to analyze lithium-ion cells is introduced. The cells are disassembled to analyze their components in experimental cell housings. Then, Electrochemical Impedance Spectroscopy, time domain measurements and the Distribution function of Relaxation Times are applied to obtain a deep understanding of the relevant loss processes. This procedure yields a notable surplus of information about the electrode contributions to the overall internal resistance of the cell.

Electrochemical Impedance Spectroscopy

Electrochemical Impedance Spectroscopy PDF Author: Mark E. Orazem
Publisher: John Wiley & Sons
ISBN: 111820994X
Category : Science
Languages : en
Pages : 510

Get Book Here

Book Description
Using electrochemical impedance spectroscopy in a broad range of applications This book provides the background and training suitable for application of impedance spectroscopy to varied applications, such as corrosion, biomedical devices, semiconductors and solid-state devices, sensors, batteries, fuel cells, electrochemical capacitors, dielectric measurements, coatings, electrochromic materials, analytical chemistry, and imaging. The emphasis is on generally applicable fundamentals rather than on detailed treatment of applications. With numerous illustrative examples showing how these principles are applied to common impedance problems, Electrochemical Impedance Spectroscopy is ideal either for course study or for independent self-study, covering: Essential background, including complex variables, differential equations, statistics, electrical circuits, electrochemistry, and instrumentation Experimental techniques, including methods used to measure impedance and other transfer functions Process models, demonstrating how deterministic models of impedance response can be developed from physical and kinetic descriptions Interpretation strategies, describing methods of interpretating of impedance data, ranging from graphical methods to complex nonlinear regression Error structure, providing a conceptual understanding of stochastic, bias, and fitting errors in frequency-domain measurements An overview that provides a philosophy for electrochemical impedance spectroscopy that integrates experimental observation, model development, and error analysis This is an excellent textbook for graduate students in electrochemistry, materials science, and chemical engineering. It's also a great self-study guide and reference for scientists and engineers who work with electrochemistry, corrosion, and electrochemical technology, including those in the biomedical field, and for users and vendors of impedance-measuring instrumentation.

Electrochemical Impedance Spectroscopy and its Applications

Electrochemical Impedance Spectroscopy and its Applications PDF Author: Andrzej Lasia
Publisher: Springer
ISBN: 1461489334
Category : Science
Languages : en
Pages : 376

Get Book Here

Book Description
This book presents a complete overview of the powerful but often misused technique of Electrochemical Impedance Spectroscopy (EIS). The book presents a systematic and complete overview of EIS. The book carefully describes EIS and its application in studies of electrocatalytic reactions and other electrochemical processes of practical interest. This book is directed towards graduate students and researchers in Electrochemistry. Concepts are illustrated through detailed graphics and numerous examples. The book also includes practice problems. Additional materials and solutions are available online.

Linear and Nonlinear Electrochemical Impedance Spectroscopy for Lithium-ion Batteries

Linear and Nonlinear Electrochemical Impedance Spectroscopy for Lithium-ion Batteries PDF Author: Matthew D. Murbach
Publisher:
ISBN:
Category :
Languages : en
Pages : 137

Get Book Here

Book Description


Physically Based Impedance Modelling of Lithium-Ion Cells

Physically Based Impedance Modelling of Lithium-Ion Cells PDF Author: Jörg Illig
Publisher:
ISBN: 9781013281518
Category : Science
Languages : en
Pages : 224

Get Book Here

Book Description
In this book, a new procedure to analyze lithium-ion cells is introduced. The cells are disassembled to analyze their components in experimental cell housings. Then, Electrochemical Impedance Spectroscopy, time domain measurements and the Distribution function of Relaxation Times are applied to obtain a deep understanding of the relevant loss processes. This procedure yields a notable surplus of information about the electrode contributions to the overall internal resistance of the cell. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.

Battery Systems Engineering

Battery Systems Engineering PDF Author: Christopher D. Rahn
Publisher: John Wiley & Sons
ISBN: 1118517059
Category : Science
Languages : en
Pages : 233

Get Book Here

Book Description
A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original approach gives a useful overview for systems engineers in chemical, mechanical, electrical, or aerospace engineering who are interested in learning more about batteries and how to use them effectively. Chemists, material scientists, and mathematical modelers can also benefit from this book by learning how their expertise affects battery management. Approaches a topic which has experienced phenomenal growth in recent years Topics covered include: Electrochemistry; Governing Equations; Discretization Methods; System Response and Battery Management Systems Include tables, illustrations, photographs, graphs, worked examples, homework problems, and references, to thoroughly illustrate key material Ideal for engineers working in the mechanical, electrical, and chemical fields as well as graduate students in these areas A valuable resource for Scientists and Engineers working in the battery or electric vehicle industries, Graduate students in mechanical engineering, electrical engineering, chemical engineering.

Electrochemical Impedance Spectroscopy (EIS) and Surface Analysis of High-Energy Cathodes for Lithium-Ion Batteries

Electrochemical Impedance Spectroscopy (EIS) and Surface Analysis of High-Energy Cathodes for Lithium-Ion Batteries PDF Author: Daniel J. Pritzl
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Battery Management Systems

Battery Management Systems PDF Author: H.J. Bergveld
Publisher: Springer Science & Business Media
ISBN: 9401708436
Category : Science
Languages : en
Pages : 311

Get Book Here

Book Description
Battery Management Systems - Design by Modelling describes the design of Battery Management Systems (BMS) with the aid of simulation methods. The basic tasks of BMS are to ensure optimum use of the energy stored in the battery (pack) that powers a portable device and to prevent damage inflicted on the battery (pack). This becomes increasingly important due to the larger power consumption associated with added features to portable devices on the one hand and the demand for longer run times on the other hand. In addition to explaining the general principles of BMS tasks such as charging algorithms and State-of-Charge (SoC) indication methods, the book also covers real-life examples of BMS functionality of practical portable devices such as shavers and cellular phones. Simulations offer the advantage over measurements that less time is needed to gain knowledge of a battery's behaviour in interaction with other parts in a portable device under a wide variety of conditions. This knowledge can be used to improve the design of a BMS, even before a prototype of the portable device has been built. The battery is the central part of a BMS and good simulation models that can be used to improve the BMS design were previously unavailable. Therefore, a large part of the book is devoted to the construction of simulation models for rechargeable batteries. With the aid of several illustrations it is shown that design improvements can indeed be realized with the presented battery models. Examples include an improved charging algorithm that was elaborated in simulations and verified in practice and a new SoC indication system that was developed showing promising results. The contents of Battery Management Systems - Design by Modelling is based on years of research performed at the Philips Research Laboratories. The combination of basic and detailed descriptions of battery behaviour both in chemical and electrical terms makes this book truly multidisciplinary. It can therefore be read both by people with an (electro)chemical and an electrical engineering background.