Author: Jonathan Arthur Hillman
Publisher: World Scientific
ISBN: 9814407399
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology. This second edition introduces two new chapters OCo twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters.
Algebraic Invariants of Links
Author: Jonathan Arthur Hillman
Publisher: World Scientific
ISBN: 9814407399
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology. This second edition introduces two new chapters OCo twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters.
Publisher: World Scientific
ISBN: 9814407399
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology. This second edition introduces two new chapters OCo twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters.
Algebraic Invariants Of Links (2nd Edition)
Author: Jonathan Hillman
Publisher: World Scientific
ISBN: 9814407402
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology.This second edition introduces two new chapters — twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters.
Publisher: World Scientific
ISBN: 9814407402
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology.This second edition introduces two new chapters — twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters.
High-dimensional Knot Theory
Author: Andrew Ranicki
Publisher: Springer Science & Business Media
ISBN: 3662120119
Category : Mathematics
Languages : en
Pages : 669
Book Description
Bringing together many results previously scattered throughout the research literature into a single framework, this work concentrates on the application of the author's algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory.
Publisher: Springer Science & Business Media
ISBN: 3662120119
Category : Mathematics
Languages : en
Pages : 669
Book Description
Bringing together many results previously scattered throughout the research literature into a single framework, this work concentrates on the application of the author's algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory.
Knots, Links, Spatial Graphs, and Algebraic Invariants
Author: Erica Flapan
Publisher: American Mathematical Soc.
ISBN: 1470428474
Category : Mathematics
Languages : en
Pages : 202
Book Description
This volume contains the proceedings of the AMS Special Session on Algebraic and Combinatorial Structures in Knot Theory and the AMS Special Session on Spatial Graphs, both held from October 24–25, 2015, at California State University, Fullerton, CA. Included in this volume are articles that draw on techniques from geometry and algebra to address topological problems about knot theory and spatial graph theory, and their combinatorial generalizations to equivalence classes of diagrams that are preserved under a set of Reidemeister-type moves. The interconnections of these areas and their connections within the broader field of topology are illustrated by articles about knots and links in spatial graphs and symmetries of spatial graphs in and other 3-manifolds.
Publisher: American Mathematical Soc.
ISBN: 1470428474
Category : Mathematics
Languages : en
Pages : 202
Book Description
This volume contains the proceedings of the AMS Special Session on Algebraic and Combinatorial Structures in Knot Theory and the AMS Special Session on Spatial Graphs, both held from October 24–25, 2015, at California State University, Fullerton, CA. Included in this volume are articles that draw on techniques from geometry and algebra to address topological problems about knot theory and spatial graph theory, and their combinatorial generalizations to equivalence classes of diagrams that are preserved under a set of Reidemeister-type moves. The interconnections of these areas and their connections within the broader field of topology are illustrated by articles about knots and links in spatial graphs and symmetries of spatial graphs in and other 3-manifolds.
Invariants of Boundary Link Cobordism
Author: Desmond Sheiham
Publisher: American Mathematical Soc.
ISBN: 0821833405
Category : Mathematics
Languages : en
Pages : 128
Book Description
An $n$-dimensional $\mu$-component boundary link is a codimension $2$ embedding of spheres $L=\sqcup_{\mu}S DEGREESn \subset S DEGREES{n+2}$ such that there exist $\mu$ disjoint oriented embedded $(n+1)$-manifolds which span the components of $L$. This title proceeds to compute the isomorphism class of $C_{
Publisher: American Mathematical Soc.
ISBN: 0821833405
Category : Mathematics
Languages : en
Pages : 128
Book Description
An $n$-dimensional $\mu$-component boundary link is a codimension $2$ embedding of spheres $L=\sqcup_{\mu}S DEGREESn \subset S DEGREES{n+2}$ such that there exist $\mu$ disjoint oriented embedded $(n+1)$-manifolds which span the components of $L$. This title proceeds to compute the isomorphism class of $C_{
Derivatives of Links: Milnor's Concordance Invariants and Massey's Products
Author: Tim D. Cochran
Publisher: American Mathematical Soc.
ISBN: 9780821824894
Category : Mathematics
Languages : en
Pages : 102
Book Description
We investigate higher-order cohomology operations (Massey products) on complements of links of circles in [italic]S3. These are known to be essentially equivalent to the [lowercase Greek]Mu [with macron]-invariants of John Milnor, which detect whether or not the longitudes of the link lie in the [italic]n[superscript]th term of the lower central series of the fundamental group of the link compliment. We define a geometric "derivative" on the set of all links and use this to define higher-order linking numbers which are shown to be "pieces" of Massey products.
Publisher: American Mathematical Soc.
ISBN: 9780821824894
Category : Mathematics
Languages : en
Pages : 102
Book Description
We investigate higher-order cohomology operations (Massey products) on complements of links of circles in [italic]S3. These are known to be essentially equivalent to the [lowercase Greek]Mu [with macron]-invariants of John Milnor, which detect whether or not the longitudes of the link lie in the [italic]n[superscript]th term of the lower central series of the fundamental group of the link compliment. We define a geometric "derivative" on the set of all links and use this to define higher-order linking numbers which are shown to be "pieces" of Massey products.
A Survey of Knot Theory
Author: Akio Kawauchi
Publisher: Birkhäuser
ISBN: 3034892276
Category : Mathematics
Languages : en
Pages : 431
Book Description
Knot theory is a rapidly developing field of research with many applications, not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of this theory from its very beginnings to today's most recent research results. An indispensable book for everyone concerned with knot theory.
Publisher: Birkhäuser
ISBN: 3034892276
Category : Mathematics
Languages : en
Pages : 431
Book Description
Knot theory is a rapidly developing field of research with many applications, not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of this theory from its very beginnings to today's most recent research results. An indispensable book for everyone concerned with knot theory.
Link Theory in Manifolds
Author: Uwe Kaiser
Publisher: Springer
ISBN: 354069546X
Category : Mathematics
Languages : en
Pages : 181
Book Description
Any topological theory of knots and links should be based on simple ideas of intersection and linking. In this book, a general theory of link bordism in manifolds and universal constructions of linking numbers in oriented 3-manifolds are developed. In this way, classical concepts of link theory in the 3-spheres are generalized to a certain class of oriented 3-manifolds (submanifolds of rational homology 3-spheres). The techniques needed are described in the book but basic knowledge in topology and algebra is assumed. The book should be of interst to those working in topology, in particular knot theory and low-dimensional topology.
Publisher: Springer
ISBN: 354069546X
Category : Mathematics
Languages : en
Pages : 181
Book Description
Any topological theory of knots and links should be based on simple ideas of intersection and linking. In this book, a general theory of link bordism in manifolds and universal constructions of linking numbers in oriented 3-manifolds are developed. In this way, classical concepts of link theory in the 3-spheres are generalized to a certain class of oriented 3-manifolds (submanifolds of rational homology 3-spheres). The techniques needed are described in the book but basic knowledge in topology and algebra is assumed. The book should be of interst to those working in topology, in particular knot theory and low-dimensional topology.
Surveys on Surgery Theory (AM-145), Volume 1
Author: Sylvain Cappell
Publisher: Princeton University Press
ISBN: 1400865190
Category : Mathematics
Languages : en
Pages : 448
Book Description
Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. There have been some extraordinary accomplishments in that time, which have led to enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source that surveys surgery theory and its applications. Indeed, no one person could write such a survey. The sixtieth birthday of C. T. C. Wall, one of the leaders of the founding generation of surgery theory, provided an opportunity to rectify the situation and produce a comprehensive book on the subject. Experts have written state-of-the-art reports that will be of broad interest to all those interested in topology, not only graduate students and mathematicians, but mathematical physicists as well. Contributors include J. Milnor, S. Novikov, W. Browder, T. Lance, E. Brown, M. Kreck, J. Klein, M. Davis, J. Davis, I. Hambleton, L. Taylor, C. Stark, E. Pedersen, W. Mio, J. Levine, K. Orr, J. Roe, J. Milgram, and C. Thomas.
Publisher: Princeton University Press
ISBN: 1400865190
Category : Mathematics
Languages : en
Pages : 448
Book Description
Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. There have been some extraordinary accomplishments in that time, which have led to enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source that surveys surgery theory and its applications. Indeed, no one person could write such a survey. The sixtieth birthday of C. T. C. Wall, one of the leaders of the founding generation of surgery theory, provided an opportunity to rectify the situation and produce a comprehensive book on the subject. Experts have written state-of-the-art reports that will be of broad interest to all those interested in topology, not only graduate students and mathematicians, but mathematical physicists as well. Contributors include J. Milnor, S. Novikov, W. Browder, T. Lance, E. Brown, M. Kreck, J. Klein, M. Davis, J. Davis, I. Hambleton, L. Taylor, C. Stark, E. Pedersen, W. Mio, J. Levine, K. Orr, J. Roe, J. Milgram, and C. Thomas.
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 780
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 780
Book Description