Author: R. James Milgram
Publisher: American Mathematical Soc.
ISBN: 0821814338
Category : Mathematics
Languages : en
Pages : 330
Book Description
Contains sections on Structure of topological manifolds, Low dimensional manifolds, Geometry of differential manifolds and algebraic varieties, $H$-spaces, loop spaces and $CW$ complexes, Problems.
Algebraic and Geometric Topology, Part 2
Author: R. James Milgram
Publisher: American Mathematical Soc.
ISBN: 0821814338
Category : Mathematics
Languages : en
Pages : 330
Book Description
Contains sections on Structure of topological manifolds, Low dimensional manifolds, Geometry of differential manifolds and algebraic varieties, $H$-spaces, loop spaces and $CW$ complexes, Problems.
Publisher: American Mathematical Soc.
ISBN: 0821814338
Category : Mathematics
Languages : en
Pages : 330
Book Description
Contains sections on Structure of topological manifolds, Low dimensional manifolds, Geometry of differential manifolds and algebraic varieties, $H$-spaces, loop spaces and $CW$ complexes, Problems.
Basic Concepts of Algebraic Topology
Author: F.H. Croom
Publisher: Springer Science & Business Media
ISBN: 1468494759
Category : Mathematics
Languages : en
Pages : 187
Book Description
This text is intended as a one semester introduction to algebraic topology at the undergraduate and beginning graduate levels. Basically, it covers simplicial homology theory, the fundamental group, covering spaces, the higher homotopy groups and introductory singular homology theory. The text follows a broad historical outline and uses the proofs of the discoverers of the important theorems when this is consistent with the elementary level of the course. This method of presentation is intended to reduce the abstract nature of algebraic topology to a level that is palatable for the beginning student and to provide motivation and cohesion that are often lacking in abstact treatments. The text emphasizes the geometric approach to algebraic topology and attempts to show the importance of topological concepts by applying them to problems of geometry and analysis. The prerequisites for this course are calculus at the sophomore level, a one semester introduction to the theory of groups, a one semester introduc tion to point-set topology and some familiarity with vector spaces. Outlines of the prerequisite material can be found in the appendices at the end of the text. It is suggested that the reader not spend time initially working on the appendices, but rather that he read from the beginning of the text, referring to the appendices as his memory needs refreshing. The text is designed for use by college juniors of normal intelligence and does not require "mathematical maturity" beyond the junior level.
Publisher: Springer Science & Business Media
ISBN: 1468494759
Category : Mathematics
Languages : en
Pages : 187
Book Description
This text is intended as a one semester introduction to algebraic topology at the undergraduate and beginning graduate levels. Basically, it covers simplicial homology theory, the fundamental group, covering spaces, the higher homotopy groups and introductory singular homology theory. The text follows a broad historical outline and uses the proofs of the discoverers of the important theorems when this is consistent with the elementary level of the course. This method of presentation is intended to reduce the abstract nature of algebraic topology to a level that is palatable for the beginning student and to provide motivation and cohesion that are often lacking in abstact treatments. The text emphasizes the geometric approach to algebraic topology and attempts to show the importance of topological concepts by applying them to problems of geometry and analysis. The prerequisites for this course are calculus at the sophomore level, a one semester introduction to the theory of groups, a one semester introduc tion to point-set topology and some familiarity with vector spaces. Outlines of the prerequisite material can be found in the appendices at the end of the text. It is suggested that the reader not spend time initially working on the appendices, but rather that he read from the beginning of the text, referring to the appendices as his memory needs refreshing. The text is designed for use by college juniors of normal intelligence and does not require "mathematical maturity" beyond the junior level.
Algebraic Topology
Author: William Fulton
Publisher: Springer Science & Business Media
ISBN: 1461241804
Category : Mathematics
Languages : en
Pages : 435
Book Description
To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups
Publisher: Springer Science & Business Media
ISBN: 1461241804
Category : Mathematics
Languages : en
Pages : 435
Book Description
To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups
Algebraic and Geometric Surgery
Author: Andrew Ranicki
Publisher: Oxford University Press
ISBN: 9780198509240
Category : Mathematics
Languages : en
Pages : 396
Book Description
This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, co-bordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
Publisher: Oxford University Press
ISBN: 9780198509240
Category : Mathematics
Languages : en
Pages : 396
Book Description
This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, co-bordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
Geometric Topology in Dimensions 2 and 3
Author: E.E. Moise
Publisher: Springer Science & Business Media
ISBN: 1461299063
Category : Mathematics
Languages : en
Pages : 272
Book Description
Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the "Schonflies theorem" for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known "horned sphere" of Alexander [A ] appeared soon thereafter.
Publisher: Springer Science & Business Media
ISBN: 1461299063
Category : Mathematics
Languages : en
Pages : 272
Book Description
Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the "Schonflies theorem" for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known "horned sphere" of Alexander [A ] appeared soon thereafter.
Geometric Topology: Localization, Periodicity and Galois Symmetry
Author: Dennis P. Sullivan
Publisher: Springer
ISBN: 9789048103508
Category : Mathematics
Languages : en
Pages : 286
Book Description
The seminal ‘MIT notes’ of Dennis Sullivan were issued in June 1970 and were widely circulated at the time. The notes had a - jor in?uence on the development of both algebraic and geometric topology, pioneering the localization and completion of spaces in homotopy theory, including p-local, pro?nite and rational homotopy theory, le- ing to the solution of the Adams conjecture on the relationship between vector bundles and spherical ?brations, the formulation of the ‘Sullivan conjecture’ on the contractibility of the space of maps from the classifying space of a ?nite group to a ?nite dimensional CW complex, theactionoftheGalois groupoverQofthealgebraicclosureQof Q on smooth manifold structures in pro?nite homotopy theory, the K-theory orientation ofPL manifolds and bundles. Some of this material has been already published by Sullivan him- 1 self: in an article in the Proceedings of the 1970 Nice ICM, and in the 1974 Annals of Mathematics papers Genetics of homotopy theory and the Adams conjecture and The transversality character- 2 istic class and linking cycles in surgery theory . Many of the ideas originating in the notes have been the starting point of subsequent 1 reprinted at the end of this volume 2 joint with John Morgan vii viii 3 developments . However, the text itself retains a unique ?avour of its time, and of the range of Sullivan’s ideas.
Publisher: Springer
ISBN: 9789048103508
Category : Mathematics
Languages : en
Pages : 286
Book Description
The seminal ‘MIT notes’ of Dennis Sullivan were issued in June 1970 and were widely circulated at the time. The notes had a - jor in?uence on the development of both algebraic and geometric topology, pioneering the localization and completion of spaces in homotopy theory, including p-local, pro?nite and rational homotopy theory, le- ing to the solution of the Adams conjecture on the relationship between vector bundles and spherical ?brations, the formulation of the ‘Sullivan conjecture’ on the contractibility of the space of maps from the classifying space of a ?nite group to a ?nite dimensional CW complex, theactionoftheGalois groupoverQofthealgebraicclosureQof Q on smooth manifold structures in pro?nite homotopy theory, the K-theory orientation ofPL manifolds and bundles. Some of this material has been already published by Sullivan him- 1 self: in an article in the Proceedings of the 1970 Nice ICM, and in the 1974 Annals of Mathematics papers Genetics of homotopy theory and the Adams conjecture and The transversality character- 2 istic class and linking cycles in surgery theory . Many of the ideas originating in the notes have been the starting point of subsequent 1 reprinted at the end of this volume 2 joint with John Morgan vii viii 3 developments . However, the text itself retains a unique ?avour of its time, and of the range of Sullivan’s ideas.
Applications of Algebraic Topology
Author: S. Lefschetz
Publisher: Springer Science & Business Media
ISBN: 1468493671
Category : Mathematics
Languages : en
Pages : 190
Book Description
This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.
Publisher: Springer Science & Business Media
ISBN: 1468493671
Category : Mathematics
Languages : en
Pages : 190
Book Description
This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.
Differential Forms in Algebraic Topology
Author: Raoul Bott
Publisher: Springer Science & Business Media
ISBN: 1475739516
Category : Mathematics
Languages : en
Pages : 319
Book Description
Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.
Publisher: Springer Science & Business Media
ISBN: 1475739516
Category : Mathematics
Languages : en
Pages : 319
Book Description
Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.
Topological Embeddings
Author:
Publisher: Academic Press
ISBN: 0080873677
Category : Mathematics
Languages : en
Pages : 333
Book Description
Topological Embeddings
Publisher: Academic Press
ISBN: 0080873677
Category : Mathematics
Languages : en
Pages : 333
Book Description
Topological Embeddings
Algebraic and Geometric Topology, Part 1
Author: R. James Milgram
Publisher: American Mathematical Soc.
ISBN: 082181432X
Category : Mathematics
Languages : en
Pages : 422
Book Description
Contains sections on Algebraic $K$- and $L$-theory, Surgery and its applications, Group actions.
Publisher: American Mathematical Soc.
ISBN: 082181432X
Category : Mathematics
Languages : en
Pages : 422
Book Description
Contains sections on Algebraic $K$- and $L$-theory, Surgery and its applications, Group actions.