Algebraic and Differential Methods for Nonlinear Control Theory

Algebraic and Differential Methods for Nonlinear Control Theory PDF Author: Rafael Martínez-Guerra
Publisher: Springer
ISBN: 3030120252
Category : Technology & Engineering
Languages : en
Pages : 201

Get Book Here

Book Description
This book is a short primer in engineering mathematics with a view on applications in nonlinear control theory. In particular, it introduces some elementary concepts of commutative algebra and algebraic geometry which offer a set of tools quite different from the traditional approaches to the subject matter. This text begins with the study of elementary set and map theory. Chapters 2 and 3 on group theory and rings, respectively, are included because of their important relation to linear algebra, the group of invertible linear maps (or matrices) and the ring of linear maps of a vector space. Homomorphisms and Ideals are dealt with as well at this stage. Chapter 4 is devoted to the theory of matrices and systems of linear equations. Chapter 5 gives some information on permutations, determinants and the inverse of a matrix. Chapter 6 tackles vector spaces over a field, Chapter 7 treats linear maps resp. linear transformations, and in addition the application in linear control theory of some abstract theorems such as the concept of a kernel, the image and dimension of vector spaces are illustrated. Chapter 8 considers the diagonalization of a matrix and their canonical forms. Chapter 9 provides a brief introduction to elementary methods for solving differential equations and, finally, in Chapter 10, nonlinear control theory is introduced from the point of view of differential algebra.

Algebraic and Differential Methods for Nonlinear Control Theory

Algebraic and Differential Methods for Nonlinear Control Theory PDF Author: Rafael Martínez-Guerra
Publisher: Springer
ISBN: 3030120252
Category : Technology & Engineering
Languages : en
Pages : 201

Get Book Here

Book Description
This book is a short primer in engineering mathematics with a view on applications in nonlinear control theory. In particular, it introduces some elementary concepts of commutative algebra and algebraic geometry which offer a set of tools quite different from the traditional approaches to the subject matter. This text begins with the study of elementary set and map theory. Chapters 2 and 3 on group theory and rings, respectively, are included because of their important relation to linear algebra, the group of invertible linear maps (or matrices) and the ring of linear maps of a vector space. Homomorphisms and Ideals are dealt with as well at this stage. Chapter 4 is devoted to the theory of matrices and systems of linear equations. Chapter 5 gives some information on permutations, determinants and the inverse of a matrix. Chapter 6 tackles vector spaces over a field, Chapter 7 treats linear maps resp. linear transformations, and in addition the application in linear control theory of some abstract theorems such as the concept of a kernel, the image and dimension of vector spaces are illustrated. Chapter 8 considers the diagonalization of a matrix and their canonical forms. Chapter 9 provides a brief introduction to elementary methods for solving differential equations and, finally, in Chapter 10, nonlinear control theory is introduced from the point of view of differential algebra.

Methods of Algebraic Geometry in Control Theory: Part I

Methods of Algebraic Geometry in Control Theory: Part I PDF Author: Peter Falb
Publisher: Springer
ISBN: 3319980262
Category : Mathematics
Languages : en
Pages : 211

Get Book Here

Book Description
"An introduction to the ideas of algebraic geometry in the motivated context of system theory." Thus the author describes his textbook that has been specifically written to serve the needs of students of systems and control. Without sacrificing mathematical care, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than abstraction. The student will find here a clear presentation with an applied flavor, of the core ideas in the algebra-geometric treatment of scalar linear system theory. The author introduces the four representations of a scalar linear system and establishes the major results of a similar theory for multivariable systems appearing in a succeeding volume (Part II: Multivariable Linear Systems and Projective Algebraic Geometry). Prerequisites are the basics of linear algebra, some simple notions from topology and the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises are an integral part of the treatment and are used where relevant in the main body of the text. The present, softcover reprint is designed to make this classic textbook available to a wider audience. "This book is a concise development of affine algebraic geometry together with very explicit links to the applications...[and] should address a wide community of readers, among pure and applied mathematicians." —Monatshefte für Mathematik

Nonlinear Control Systems

Nonlinear Control Systems PDF Author: G. Conte
Publisher: Springer
ISBN: 9781447139676
Category : Computers
Languages : en
Pages : 168

Get Book Here

Book Description
This book provides a unique and alternative approach to the study of nonlinear control systems, with applications. The approach presented is based on the use of algebraic methods which are intrinsically linear, rather than differential geometric methods, which are more commonly found in other reference works on the subject. This allows the exposition to remain simple from a mathematical point of view, and accessible for everyone who has a good understanding of linear control theory. The book is divided into the following three parts: Part 1 is devoted to mathematical preliminaries and to the development of tools and methods for system analysis. Part 2 is concerned with solving specific control problems, including disturbance decoupling, non-interactive control, model matching and feedback linearization problems. Part 3 introduces differential algebraic notions and discusses their applications to nonlinear control and system theory. With numerous examples used to illustrate theoretical results, this self-contained and comprehensive volume will be of interest to all those who have a good basic knowledge of standard linear control systems.

Control and Optimization with Differential-Algebraic Constraints

Control and Optimization with Differential-Algebraic Constraints PDF Author: Lorenz T. Biegler
Publisher: SIAM
ISBN: 1611972248
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
A cutting-edge guide to modelling complex systems with differential-algebraic equations, suitable for applied mathematicians, engineers and computational scientists.

Algebraic Methods for Nonlinear Control Systems

Algebraic Methods for Nonlinear Control Systems PDF Author: Giuseppe Conte
Publisher: Springer Science & Business Media
ISBN: 184628595X
Category : Technology & Engineering
Languages : en
Pages : 183

Get Book Here

Book Description
This is a self-contained introduction to algebraic control for nonlinear systems suitable for researchers and graduate students. It is the first book dealing with the linear-algebraic approach to nonlinear control systems in such a detailed and extensive fashion. It provides a complementary approach to the more traditional differential geometry and deals more easily with several important characteristics of nonlinear systems.

Linear Algebra for Control Theory

Linear Algebra for Control Theory PDF Author: Paul Van Dooren
Publisher: Springer Science & Business Media
ISBN: 1461384192
Category : Mathematics
Languages : en
Pages : 203

Get Book Here

Book Description
During the past decade the interaction between control theory and linear algebra has been ever increasing, giving rise to new results in both areas. As a natural outflow of this research, this book presents information on this interdisciplinary area. The cross-fertilization between control and linear algebra can be found in subfields such as Numerical Linear Algebra, Canonical Forms, Ring-theoretic Methods, Matrix Theory, and Robust Control. This book's editors were challenged to present the latest results in these areas and to find points of common interest. This volume reflects very nicely the interaction: the range of topics seems very wide indeed, but the basic problems and techniques are always closely connected. And the common denominator in all of this is, of course, linear algebra. This book is suitable for both mathematicians and students.

Mathematical Control Theory

Mathematical Control Theory PDF Author: Eduardo D. Sontag
Publisher: Springer Science & Business Media
ISBN: 1461205778
Category : Mathematics
Languages : en
Pages : 543

Get Book Here

Book Description
Geared primarily to an audience consisting of mathematically advanced undergraduate or beginning graduate students, this text may additionally be used by engineering students interested in a rigorous, proof-oriented systems course that goes beyond the classical frequency-domain material and more applied courses. The minimal mathematical background required is a working knowledge of linear algebra and differential equations. The book covers what constitutes the common core of control theory and is unique in its emphasis on foundational aspects. While covering a wide range of topics written in a standard theorem/proof style, it also develops the necessary techniques from scratch. In this second edition, new chapters and sections have been added, dealing with time optimal control of linear systems, variational and numerical approaches to nonlinear control, nonlinear controllability via Lie-algebraic methods, and controllability of recurrent nets and of linear systems with bounded controls.

Essays on Control

Essays on Control PDF Author: H.L. Trentelman
Publisher: Springer Science & Business Media
ISBN: 1461203139
Category : Science
Languages : en
Pages : 440

Get Book Here

Book Description
This book contains the text of the plenary lectures and the mini-courses of the European Control Conference (ECC'93) held in Groningen, the Netherlands, June 2S-July 1, 1993. However, the book is not your usu al conference proceedings. Instead, the authors took this occasion to take a broad overview of the field of control and discuss its development both from a theoretical as well as from an engineering perpective. The first essay is by the key-note speaker ofthe conference, A.G.J. Mac Farlane. It consists of a non-technical discussion of information processing and knowledge acquisition as the key features of control engineering tech nology. The next six articles are accounts of the plenary addresses. The contribution by R.W. Brockett concerns a mathematical framework for modelling motion control, a central question in robotics and vision. In the paper by M. Morari the engineering and the economic relevance of chemical process control are considered, in particular statistical quality control and the control of systems with constraints. The article by A.C.P.M. Backx is written from an industrial perspec tive. The author is director of an engineering consulting firm involved in the design of industrial control equipment. Specifically, the possibility of obtaining high performance and reliable controllers by modelling, identifi cation, and optimizing industrial processes is discussed.

Nonlinear Systems Analysis

Nonlinear Systems Analysis PDF Author: M. Vidyasagar
Publisher: SIAM
ISBN: 9780898719185
Category : Mathematics
Languages : en
Pages : 515

Get Book Here

Book Description
When M. Vidyasagar wrote the first edition of Nonlinear Systems Analysis, most control theorists considered the subject of nonlinear systems a mystery. Since then, advances in the application of differential geometric methods to nonlinear analysis have matured to a stage where every control theorist needs to possess knowledge of the basic techniques because virtually all physical systems are nonlinear in nature. The second edition, now republished in SIAM's Classics in Applied Mathematics series, provides a rigorous mathematical analysis of the behavior of nonlinear control systems under a variety of situations. It develops nonlinear generalizations of a large number of techniques and methods widely used in linear control theory. The book contains three extensive chapters devoted to the key topics of Lyapunov stability, input-output stability, and the treatment of differential geometric control theory. Audience: this text is designed for use at the graduate level in the area of nonlinear systems and as a resource for professional researchers and practitioners working in areas such as robotics, spacecraft control, motor control, and power systems.

Control Theory from the Geometric Viewpoint

Control Theory from the Geometric Viewpoint PDF Author: Andrei A. Agrachev
Publisher: Springer Science & Business Media
ISBN: 3662064049
Category : Science
Languages : en
Pages : 415

Get Book Here

Book Description
This book presents some facts and methods of the Mathematical Control Theory treated from the geometric point of view. The book is mainly based on graduate courses given by the first coauthor in the years 2000-2001 at the International School for Advanced Studies, Trieste, Italy. Mathematical prerequisites are reduced to standard courses of Analysis and Linear Algebra plus some basic Real and Functional Analysis. No preliminary knowledge of Control Theory or Differential Geometry is required. What this book is about? The classical deterministic physical world is described by smooth dynamical systems: the future in such a system is com pletely determined by the initial conditions. Moreover, the near future changes smoothly with the initial data. If we leave room for "free will" in this fatalistic world, then we come to control systems. We do so by allowing certain param eters of the dynamical system to change freely at every instant of time. That is what we routinely do in real life with our body, car, cooker, as well as with aircraft, technological processes etc. We try to control all these dynamical systems! Smooth dynamical systems are governed by differential equations. In this book we deal only with finite dimensional systems: they are governed by ordi nary differential equations on finite dimensional smooth manifolds. A control system for us is thus a family of ordinary differential equations. The family is parametrized by control parameters.