Aircraft Secondary Power & Thermal Management Systems

Aircraft Secondary Power & Thermal Management Systems PDF Author: J. A. Pennington
Publisher:
ISBN:
Category :
Languages : en
Pages : 131

Get Book Here

Book Description

Aircraft Secondary Power & Thermal Management Systems

Aircraft Secondary Power & Thermal Management Systems PDF Author: J. A. Pennington
Publisher:
ISBN:
Category :
Languages : en
Pages : 131

Get Book Here

Book Description


An Introduction to Aircraft Thermal Management

An Introduction to Aircraft Thermal Management PDF Author: Mark Ahlers
Publisher: SAE International
ISBN: 0768093422
Category : Technology & Engineering
Languages : en
Pages : 206

Get Book Here

Book Description
Aircraft Thermal Management (ATM)focuses on how to manage heat in an aircraft to meet the temperature requirements for passengers and vehicle. This primarily involves removing heat and protecting equipment, systems, and structure from heat sources that could raise their temperature beyond design limits. Crew and passengers must be neither too hot nor too cold during airplane operations. Thus, maintaining thermal comport is critically important, and not a trivial operation. Written by Mark F. Ahlers, a retired Boeing Technical Fellow and its first Thermal Marshal, An Introduction to Aircraft Thermal Management is the ultimate source of knowledge concerning: Temperature and thermal related requirements Airplane-generated heat sources External heat sources Aircraft heat sinks Fire and Failures Environmental control systems Thermal design Analytical modeling Analytical software Testing Military aircraft thermal management Fully illustrated and amply referenced, An Introduction to Aircraft Thermal Management provides a very balanced approach between theory and practice, best practices and technical insights. It is a must-have reference for both young engineers starting in the filed and for seasoned professionals willing to re-sharpen their skills.

Aircraft Thermal Management

Aircraft Thermal Management PDF Author: Mark Ahlers
Publisher: SAE International
ISBN: 076808296X
Category : Science
Languages : en
Pages : 107

Get Book Here

Book Description
Aircraft thermal management (ATM) is increasingly important to the design and operation of commercial and military aircraft due to rising heat loads from expanded electronic functionality, electric systems architectures, and the greater temperature sensitivity of composite materials compared to metallic structures. It also impacts engine fuel consumption associated with removing waste heat from an aircraft. More recently the advent of more electric architectures on aircraft, such as the Boeing 787, has led to increased interest in the development of more efficient ATM architectures by the commercial airplane manufacturers. The ten papers contained in this book describe aircraft thermal management system architectures designed to minimize airplane performance impacts which could be applied to commercial or military aircraft. Additional information on Aircraft Thermal Management System Architectures is available from SAE AIR 5744 issued by the AC-9 Aircraft Environmental System Committee and the SAE book Aircraft Thermal Management Integrated Analysis (PT-178). SAE AIR 5744 defines the discipline of aircraft thermal management system engineering while Aircraft Thermal Management Integrated Analysis discusses approaches to computer simulation of the simultaneous operation of all systems affecting thermal management on an aircraft.

Aircraft Thermal Management

Aircraft Thermal Management PDF Author: Mark Ahlers
Publisher: SAE International
ISBN: 0768083044
Category : Technology & Engineering
Languages : en
Pages : 117

Get Book Here

Book Description
The simultaneous operation of all systems generating, moving, or removing heat on an aircraft is simulated using integrated analysis which is called Integrated Energy System Analysis (IESA) for this book. Its purpose is to understand, optimize, and validate more efficient system architectures for removing or harvesting the increasing amounts of waste heat generated in commercial and military aircraft. In the commercial aircraft industry IESA is driven by the desire to minimize airplane operating costs associated with increased system weight, power consumption, drag, and lost revenue as cargo space is devoted to expanded cooling systems. In military aircraft thermal IESA is also considered to be a key enabler for the successful implementation of the next generation jet fighter weapons systems and countermeasures. This book contains a selection of papers relevant to aircraft thermal management IESA published by SAE International. They cover both recently developed government and industry- funded thermal management IESA such as the Integrated Vehicle Energy Technology (INVENT) program, and older published papers still relevant today which address modeling approaches.

Aircraft Thermal Management

Aircraft Thermal Management PDF Author: Mark Ahlers
Publisher: SAE International
ISBN: 0768082978
Category : Technology & Engineering
Languages : en
Pages : 107

Get Book Here

Book Description
Aircraft thermal management (ATM) is increasingly important to the design and operation of commercial and military aircraft due to rising heat loads from expanded electronic functionality, electric systems architectures, and the greater temperature sensitivity of composite materials compared to metallic structures. It also impacts engine fuel consumption associated with removing waste heat from an aircraft. More recently the advent of more electric architectures on aircraft, such as the Boeing 787, has led to increased interest in the development of more efficient ATM architectures by the commercial airplane manufacturers. The ten papers contained in this book describe aircraft thermal management system architectures designed to minimize airplane performance impacts which could be applied to commercial or military aircraft. Additional information on Aircraft Thermal Management System Architectures is available from SAE AIR 5744 issued by the AC-9 Aircraft Environmental System Committee and the SAE book Aircraft Thermal Management Integrated Analysis (PT-178). SAE AIR 5744 defines the discipline of aircraft thermal management system engineering while Aircraft Thermal Management Integrated Analysis discusses approaches to computer simulation of the simultaneous operation of all systems affecting thermal management on an aircraft.

AUXILIARY POWER SYSTEM CONSIDERATIONS FOR ADVANCED MILITARY AIRCRAFT

AUXILIARY POWER SYSTEM CONSIDERATIONS FOR ADVANCED MILITARY AIRCRAFT PDF Author: AE-6 Starting Systems and Auxiliary Power Committee
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This document provides a brief description of the auxiliary power equipment that is available with enough description and pertinent comments to enable an engineer to make logical preliminary selection of the appropriate equipment for advanced military aircraft programs. The information has been kept as brief as possible to include the maximum amount of equipment in a relatively short document. It is not intended to replace textbook design analysis or detailed information available from the equipment suppliers.The document describes auxiliary power equipment. Auxiliary power is defined as follows: "Those elements of secondary power [defined as all aircraft nonpropulsive power generation and transmission] related to main engine bleed air and shaft power extraction or power generation separate from the main engines. Included are engine bleed air systems, remote engine driven gearboxes, engine starting systems, auxiliary power units, and emergency power systems." Additional definitions may be found in ARP906A which is the source of this definition.Some closely related systems which are not discussed in detail, include thermal management, environmental control, electrical, and hydraulic systems.

Aircraft Thermal Management

Aircraft Thermal Management PDF Author: Mark Ahlers
Publisher:
ISBN: 9780768087260
Category :
Languages : en
Pages : 107

Get Book Here

Book Description
Aircraft thermal management (ATM) is increasingly important to the design and operation of commercial and military aircraft due to rising heat loads from expanded electronic functionality, electric systems architectures, and the greater temperature sensitivity of composite materials compared to metallic structures. It also impacts engine fuel consumption associated with removing waste heat from an aircraft. More recently the advent of more electric architectures on aircraft, such as the Boeing 787, has led to increased interest in the development of more efficient ATM architectures by the comme.

Commercial Aircraft Propulsion and Energy Systems Research

Commercial Aircraft Propulsion and Energy Systems Research PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309440998
Category : Technology & Engineering
Languages : en
Pages : 123

Get Book Here

Book Description
The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.

Vehicle Level Transient Aircraft Thermal Management Modeling and Simulation

Vehicle Level Transient Aircraft Thermal Management Modeling and Simulation PDF Author: Adam B. Donovan
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 72

Get Book Here

Book Description
Many advances in technology are expected to increase the capabilities of next generation aircraft, and these advances will increase the thermal load on the aircraft as well. In order to assess and account for these increased thermal loads, three studies were performed: a fuel pump trade study, a high energy pulsed system (HEPS) implementation study, and a legacy vehicle environmental control system (ECS) study. The fuel pump study addresses the effect of the implementation of a centrifugal fuel pump versus a variable displacement fuel pump. Traditionally, aircraft designers have used a centrifugal fuel pump over a piston based pump based primarily on mass, volume, cost, and reliability. This study considers specific excess power (SEP), fuel burn and thermal margin and shows the piston based pump performing superior mainly because it eliminates fuel recirculation resulting in an increased thermal margin. This investigation demonstrates the benefit of capturing component level models and thermal concerns in the conceptual design process. Both of these issues are vital to the development of future aircraft designs. Additional research needs to be completed to compare both pumps based on the mass and volume of each system. The second study investigates the implementation of a HEPS device at an air vehicle level. HEPS generate excessive amounts of heat during operation, creating challenges in how to integrate them into an aircraft without overwhelming the vehicle’s power and thermal management systems (TMS). In order to evaluate the impact of the HEPS electrical and thermal load on the aircraft's mission, a vehicle level modeling and simulation (M&S) effort must be executed of the power and thermal management systems. To accurately evaluate the total effect on the aircraft, the HEPS must be integrated into a Tip to Tail (T2T) model of the system that includes the aircraft power and thermal management subsystems. With the HEPS system integrated into the T2T model, not only can its mass and volume effects be analyzed, but also the transient power and thermal loads created by the new system can be evaluated for their effect on other aircraft subsystems. Furthermore, the aircraft subsystems can be optimized to vehicle level metrics instead of subsystem level only. This will result in a more effective and balanced overall aircraft design. Using a T2T model to evaluate the integration of a HEPS system on an aircraft will enable assessment of its overall impact to next generation aircraft. Therefore, the significant impact of highly dynamic power and thermal loads on next generation aircraft is addressed. The third study is the implementation of an air cycle based ECS in a legacy (4th generation) air vehicle. Relatively few attempts have been made to define appropriate validation testing constructs for T2T analysis in a transient mode of operation. Current research addresses the process of validation testing using legacy aircraft systems in order to acquire relevant data that will lead to the validation of existing models, and different modeling methods. The model developed in this work will eventually be utilized in these validation efforts at a later date. To this end, an air vehicle system (AVS), turbine engine, generator, and environmental control system (ECS) have been modeled in a T2T model of the actual legacy system. In particular, this study will focus on the creation and integration of the ECS model. The ECS uses an air cycle machine, which utilizes a Brayton refrigeration cycle to cool the air to the cockpit and avionics. The ECS model will be shown to successfully cool these components while subjected to varying bleed rates from the turbine engine.

Aircraft Thermal Management System Engineering

Aircraft Thermal Management System Engineering PDF Author: AC-9 Aircraft Environmental Systems Committee
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The intent of this report is to encourage that the thermal management system architecture be designed from a global platform perspective. Separate procurements for air vehicle, propulsion system, and avionics have contributed to the development of aircraft that are sub-optimized from a thermal management viewpoint. In order to maximize the capabilities of the aircraft for mission performance and desired growth capability, overall system efficiency and effectiveness should be considered. This document provides general information about aircraft Thermal Management System Engineering (TMSE). The document also discusses approaches to processes and methodologies for validation and verification of thermal management system engineering.Thermal integration between the air vehicle, propulsion system, and avionics can be particularly important from a thermal management standpoint. Due to these factors, this report is written to encourage the development of a more comprehensive system engineering approach to help eliminate and/or reduce mission limitations as a result of materials and components nearing temperature limits. This SAE Aerospace Information Report is intended to provide reference and background information pertaining to Aircraft Thermal Management System Engineering. This AIR will provide a standard definition for the subject area and provide critical insight to the requirements engineering activities required for execution.This document provides guidance encouraging platform design and procurement be pursued from a system level perspective to optimize the capabilities of aircraft for mission performance and vehicle operational goals with thermal management as an objective.