Adaptive Methods Of Computing Mathematics And Mechanics: Stochastic Variant

Adaptive Methods Of Computing Mathematics And Mechanics: Stochastic Variant PDF Author: D G Arsenjev
Publisher: World Scientific
ISBN: 9814496030
Category : Mathematics
Languages : en
Pages : 437

Get Book Here

Book Description
This book describes adaptive methods of statistical numerical analysis using evaluation of integrals, solution of integral equations, boundary value problems of the theory of elasticity and heat conduction as examples.The results and approaches provided in this book are different from those available in the literature as detailed descriptions of the mechanisms of adaptation of statistical evaluation procedures, which accelerate their convergence, are given.

Adaptive Methods Of Computing Mathematics And Mechanics: Stochastic Variant

Adaptive Methods Of Computing Mathematics And Mechanics: Stochastic Variant PDF Author: D G Arsenjev
Publisher: World Scientific
ISBN: 9814496030
Category : Mathematics
Languages : en
Pages : 437

Get Book Here

Book Description
This book describes adaptive methods of statistical numerical analysis using evaluation of integrals, solution of integral equations, boundary value problems of the theory of elasticity and heat conduction as examples.The results and approaches provided in this book are different from those available in the literature as detailed descriptions of the mechanisms of adaptation of statistical evaluation procedures, which accelerate their convergence, are given.

Mathematical and Computational Techniques for Multilevel Adaptive Methods

Mathematical and Computational Techniques for Multilevel Adaptive Methods PDF Author: Ulrich Ruede
Publisher: SIAM
ISBN: 9781611970968
Category : Mathematics
Languages : en
Pages : 152

Get Book Here

Book Description
Multilevel adaptive methods play an increasingly important role in the solution of many scientific and engineering problems. Fast adaptive methods techniques are widely used by specialists to execute and analyze simulation and optimization problems. This monograph presents a unified approach to adaptive methods, addressing their mathematical theory, efficient algorithms, and flexible data structures. Rüde introduces a well-founded mathematical theory that leads to intelligent, adaptive algorithms, and suggests advanced software techniques. This new kind of multigrid theory supports the so-called "BPX" and "multilevel Schwarz" methods, and leads to the discovery of faster more robust algorithms. These techniques are deeply rooted in the theory of function spaces. Mathematical and Computational Techniques for Multilevel Adaptive Methods examines this development together with its implications for relevant algorithms for adaptive PDE methods. The author shows how abstract data types and object-oriented programming can be used for improved implementation.

Advances in Adaptive Computational Methods in Mechanics

Advances in Adaptive Computational Methods in Mechanics PDF Author: P. Ladeveze
Publisher: Elsevier
ISBN: 0080525938
Category : Computers
Languages : en
Pages : 539

Get Book Here

Book Description
Mastering modelling, and in particular numerical models, is becoming a crucial and central question in modern computational mechanics. Various tools, able to quantify the quality of a model with regard to another one taken as the reference, have been derived. Applied to computational strategies, these tools lead to new computational methods which are called "adaptive". The present book is concerned with outlining the state of the art and the latest advances in both these important areas.Papers are selected from a Workshop (Cachan 17-19 September 1997) which is the third of a series devoted to Error Estimators and Adaptivity in Computational Mechanics. The Cachan Workshop dealt with latest advances in adaptive computational methods in mechanics and their impacts on solving engineering problems. It was centered too on providing answers to simple questions such as: what is being used or can be used at present to solve engineering problems? What should be the state of art in the year 2000? What are the new questions involving error estimators and their applications?

Research Directions in Computational Mechanics

Research Directions in Computational Mechanics PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309046483
Category : Technology & Engineering
Languages : en
Pages : 145

Get Book Here

Book Description
Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.

Adaptive Computing : Mathematical and Physical Methods for Complex Environments

Adaptive Computing : Mathematical and Physical Methods for Complex Environments PDF Author: Henry John Caulfield
Publisher: SPIE-International Society for Optical Engineering
ISBN:
Category : Computers
Languages : en
Pages : 234

Get Book Here

Book Description


Adaptive Methods — Algorithms, Theory and Applications

Adaptive Methods — Algorithms, Theory and Applications PDF Author: W. Hackbusch
Publisher: Springer Science & Business Media
ISBN: 3663142469
Category : Computers
Languages : en
Pages : 281

Get Book Here

Book Description
The GAMM Committee for "Efficient Numerical Methods for Partial Differential Equations" organizes workshops on subjects concerning the algorithmical treat ment of partial differential equations. The topics are discretization methods like the finite element and finite volume method for various types of applications in structural and fluid mechanics. Particular attention is devoted to advanced solu tion techniques. th The series of such workshops was continued in 1993, January 22-24, with the 9 Kiel-Seminar on the special topic "Adaptive Methods Algorithms, Theory and Applications" at the Christian-Albrechts-University of Kiel. The seminar was attended by 76 scientists from 7 countries and 23 lectures were given. The list of topics contained general lectures on adaptivity, special discretization schemes, error estimators, space-time adaptivity, adaptive solvers, multi-grid me thods, wavelets, and parallelization. Special thanks are due to Michael Heisig, who carefully compiled the contribu tions to this volume. November 1993 Wolfgang Hackbusch Gabriel Wittum v Contents Page A. AUGE, G. LUBE, D. WEISS: Galerkin/Least-Squares-FEM and Ani- tropic Mesh Refinement. 1 P. BASTIAN, G. WmUM : Adaptive Multigrid Methods: The UG Concept. 17 R. BEINERT, D. KRONER: Finite Volume Methods with Local Mesh Alignment in 2-D. 38 T. BONK: A New Algorithm for Multi-Dimensional Adaptive Nume- cal Quadrature. 54 F.A. BORNEMANN: Adaptive Solution of One-Dimensional Scalar Conservation Laws with Convex Flux. 69 J. CANU, H. RITZDORF : Adaptive, Block-Structured Multigrid on Local Memory Machines. 84 S. DAHLKE, A. KUNaTH: Biorthogonal Wavelets and Multigrid. 99 B. ERDMANN, R.H.W. HOPPE, R.

Adaptive Finite Element Methods for Differential Equations

Adaptive Finite Element Methods for Differential Equations PDF Author: Wolfgang Bangerth
Publisher: Birkhäuser
ISBN: 303487605X
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description
These Lecture Notes have been compiled from the material presented by the second author in a lecture series ('Nachdiplomvorlesung') at the Department of Mathematics of the ETH Zurich during the summer term 2002. Concepts of 'self adaptivity' in the numerical solution of differential equations are discussed with emphasis on Galerkin finite element methods. The key issues are a posteriori er ror estimation and automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method (or shortly D WR method) for goal-oriented error estimation is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. 'Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. The basics of the DWR method and various of its applications are described in the following survey articles: R. Rannacher [114], Error control in finite element computations. In: Proc. of Summer School Error Control and Adaptivity in Scientific Computing (H. Bulgak and C. Zenger, eds), pp. 247-278. Kluwer Academic Publishers, 1998. M. Braack and R. Rannacher [42], Adaptive finite element methods for low Mach-number flows with chemical reactions.

Adaptive Stochastic Methods

Adaptive Stochastic Methods PDF Author: Dmitry G. Arseniev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110554631
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
This monograph develops adaptive stochastic methods in computational mathematics. The authors discuss the basic ideas of the algorithms and ways to analyze their properties and efficiency. Methods of evaluation of multidimensional integrals and solutions of integral equations are illustrated by multiple examples from mechanics, theory of elasticity, heat conduction and fluid dynamics. Contents Part I: Evaluation of Integrals Fundamentals of the Monte Carlo Method to Evaluate Definite Integrals Sequential Monte Carlo Method and Adaptive Integration Methods of Adaptive Integration Based on Piecewise Approximation Methods of Adaptive Integration Based on Global Approximation Numerical Experiments Adaptive Importance Sampling Method Based on Piecewise Constant Approximation Part II: Solution of Integral Equations Semi-Statistical Method of Solving Integral Equations Numerically Problem of Vibration Conductivity Problem on Ideal-Fluid Flow Around an Airfoil First Basic Problem of Elasticity Theory Second Basic Problem of Elasticity Theory Projectional and Statistical Method of Solving Integral Equations Numerically

Snapshot-Based Methods and Algorithms

Snapshot-Based Methods and Algorithms PDF Author: Peter Benner
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110671492
Category : Mathematics
Languages : en
Pages : 356

Get Book Here

Book Description
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.

Error-controlled Adaptive Finite Elements in Solid Mechanics

Error-controlled Adaptive Finite Elements in Solid Mechanics PDF Author: Ekkehard Ramm
Publisher: John Wiley & Sons
ISBN: 0470857978
Category : Technology & Engineering
Languages : en
Pages : 422

Get Book Here

Book Description
Finite Element Methods are used for numerous engineering applications where numerical solutions of partial differential equations are needed. As computers can now deal with the millions of parameters used in these methods, automatic error estimation and automatic adaptation of the utilised method (according to this error estimation), has become a hot research topic. This text offers comprehensive coverage of this new field of automatic adaptation and error estimation, bringing together the work of eight outstanding researchers in this field who have completed a six year national research project within the German Science Foundation. The result is a state-of-the-art work in true reference style. Each chapter is self-contained and covers theoretical, algorithmic and software presentations as well as solved problems. A main feature consists of several carefully elaborated benchmarks of 2D- and 3D- applications. * First book to go beyond the Finite Element Method in itself * Covers material from a new research area * Presents benchmarks of 2D- and 3D- applications * Fits with the new trend for genetic strategies in engineering