Abelian Coverings of the Complex Projective Plane Branched along Configurations of Real Lines

Abelian Coverings of the Complex Projective Plane Branched along Configurations of Real Lines PDF Author: Eriko Hironaka
Publisher: American Mathematical Soc.
ISBN: 082182564X
Category : Mathematics
Languages : en
Pages : 98

Get Book Here

Book Description
This work studies abelian branched coverings of smooth complex projective surfaces from the topological viewpoint. Geometric information about the coverings (such as the first Betti numbers of a smooth model or intersections of embedded curves) is related to topological and combinatorial information about the base space and branch locus. Special attention is given to examples in which the base space is the complex projective plane and the branch locus is a configuration of lines.

Abelian Coverings of the Complex Projective Plane Branched along Configurations of Real Lines

Abelian Coverings of the Complex Projective Plane Branched along Configurations of Real Lines PDF Author: Eriko Hironaka
Publisher: American Mathematical Soc.
ISBN: 082182564X
Category : Mathematics
Languages : en
Pages : 98

Get Book Here

Book Description
This work studies abelian branched coverings of smooth complex projective surfaces from the topological viewpoint. Geometric information about the coverings (such as the first Betti numbers of a smooth model or intersections of embedded curves) is related to topological and combinatorial information about the base space and branch locus. Special attention is given to examples in which the base space is the complex projective plane and the branch locus is a configuration of lines.

Abelian Coverings of the Complex Projective Plane Branched Along...

Abelian Coverings of the Complex Projective Plane Branched Along... PDF Author: Eriko Hironaka
Publisher: American Mathematical Society(RI)
ISBN: 9781470400798
Category : Algebraic varieties
Languages : en
Pages : 98

Get Book Here

Book Description
This work studies abelian branched coverings of smooth complex projective surfaces from the topological viewpoint. Geometric information about the coverings (such as the first Betti numbers of a smooth model or intersections of embedded curves) is related to topological and combinatorial information about the base space and branch locus. Special attention is given to examples in which the base space is the complex projective plane and the branch locus is a configuration of lines.

Anticipative Girsanov Transformations and Skorohod Stochastic Differential Equations

Anticipative Girsanov Transformations and Skorohod Stochastic Differential Equations PDF Author: Rainer Buckdahn
Publisher: American Mathematical Soc.
ISBN: 0821825968
Category : Mathematics
Languages : en
Pages : 102

Get Book Here

Book Description
This monograph presents a concise exposition of recent developments in anticipative stochastic calculus. The anticipative calculus uses tools from differential calculus and distribution theory on Wiener space to analyze stochastic integrals with integrands which can anticipate the future of the Brownian integrator. In particular, the Skorohod integral, defined as a dual operator to the Wiener space derivative, and the anticipating Stratonovich integrals are fundamental.

Second-Order Sturm-Liouville Difference Equations and Orthogonal Polynomials

Second-Order Sturm-Liouville Difference Equations and Orthogonal Polynomials PDF Author: Alouf Jirari
Publisher: American Mathematical Soc.
ISBN: 082180359X
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
This memoir presents machinery for analyzing many discrete physical situations, and should be of interest to physicists, engineers, and mathematicians. We develop a theory for regular and singular Sturm-Liouville boundary value problems for difference equations, generalizing many of the known results for differential equations. We discuss the self-adjointness of these problems as well as their abstract spectral resolution in the appropriate [italic capital]L2 setting, and give necessary and sufficient conditions for a second-order difference operator to be self-adjoint and have orthogonal polynomials as eigenfunctions.

Subgroup Lattices and Symmetric Functions

Subgroup Lattices and Symmetric Functions PDF Author: Lynne M. Butler
Publisher: American Mathematical Soc.
ISBN: 082182600X
Category : Mathematics
Languages : en
Pages : 173

Get Book Here

Book Description
This work presents foundational research on two approaches to studying subgroup lattices of finite abelian p-groups. The first approach is linear algebraic in nature and generalizes Knuth's study of subspace lattices. This approach yields a combinatorial interpretation of the Betti polynomials of these Cohen-Macaulay posets. The second approach, which employs Hall-Littlewood symmetric functions, exploits properties of Kostka polynomials to obtain enumerative results such as rank-unimodality. Butler completes Lascoux and Schützenberger's proof that Kostka polynomials are nonnegative, then discusses their monotonicity result and a conjecture on Macdonald's two-variable Kostka functions.

Automorphisms of the Lattice of Recursively Enumerable Sets

Automorphisms of the Lattice of Recursively Enumerable Sets PDF Author: Peter Cholak
Publisher: American Mathematical Soc.
ISBN: 0821826018
Category : Mathematics
Languages : en
Pages : 166

Get Book Here

Book Description
A version of Harrington's [capital Greek]Delta3-automorphism technique for the lattice of recursively enumerable sets is introduced and developed by reproving Soare's Extension Theorem. Then this automorphism technique is used to show two technical theorems: the High Extension Theorem I and the High Extension Theorem II. This is a degree-theoretic technique for constructing both automorphisms of the lattice of r.e. sets and isomorphisms between various substructures of the lattice.

${\mathcal I}$-Density Continuous Functions

${\mathcal I}$-Density Continuous Functions PDF Author: Krzysztof Ciesielski
Publisher: American Mathematical Soc.
ISBN: 0821825798
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
The [script capital]I-density topology is a generalization of the ordinary density topology to the setting of category instead of measure. This work involves functions which are continuous when combinations of the [script capital]I-density, deep [script capital]I-density, density and ordinary topology are used on the domain and range. In the process of examining these functions, the [script capital]I-density and deep-[script capital]I-density topologies are deeply explored and the properties of these function classes as semigroups are considered.

Separatrix Surfaces and Invariant Manifolds of a Class of Integrable Hamiltonian Systems and Their Perturbations

Separatrix Surfaces and Invariant Manifolds of a Class of Integrable Hamiltonian Systems and Their Perturbations PDF Author: Jaume Llibre
Publisher: American Mathematical Soc.
ISBN: 082182581X
Category : Mathematics
Languages : en
Pages : 206

Get Book Here

Book Description
This work presents a study of the foliations of the energy levels of a class of integrable Hamiltonian systems by the sets of constant energy and angular momentum. This includes a classification of the topological bifurcations and a dynamical characterization of the criticalleaves (separatrix surfaces) of the foliation. Llibre and Nunes then consider Hamiltonain perturbations of this class of integrable Hamiltonians and give conditions for the persistence of the separatrix structure of the foliations and for the existence of transversal ejection-collision orbits of the perturbed system. Finally, they consider a class of non-Hamiltonian perturbations of a family of integrable systems of the type studied earlier and prove the persistence of "almost all" the tori and cylinders that foliate the energy levels of the unperturbed system as a consequence of KAM theory.

Generalized Tate Cohomology

Generalized Tate Cohomology PDF Author: John Patrick Campbell Greenlees
Publisher: American Mathematical Soc.
ISBN: 0821826034
Category : Mathematics
Languages : en
Pages : 193

Get Book Here

Book Description
Let [italic capital]G be a compact Lie group, [italic capitals]EG a contractible free [italic capital]G-space and let [italic capitals]E~G be the unreduced suspension of [italic capitals]EG with one of the cone points as basepoint. Let [italic]k*[over][subscript italic capital]G be a [italic capital]G-spectrum. Let [italic capital]X+ denote the disjoint union of [italic capital]X and a [italic capital]G-fixed basepoint. Define the [italic capital]G-spectra [italic]f([italic]k*[over][subscript italic capital]G) = [italic]k*[over][subscript italic capital]G [up arrowhead symbol] [italic capitals]EG+, [italic]c([italic]k*[over][subscript italic capital]G) = [italic capital]F([italic capitals]EG+,[italic]k*[over][subscript italic capital]G), and [italic]t([italic]k[subscript italic capital]G)* = [italic capital]F([italic capitals]EG+,[italic]k*[over][subscript italic capital]G) [up arrowhead symbol] [italic capitals]E~G. The last of these is the [italic capital]G-spectrum representing the generalized Tate homology and cohomology theories associated to [italic]k[subscript italic capital]G. Here [italic capital]F([italic capitals]EG+,[italic]k*[over][subscript italic capital]G) is the function space spectrum. The authors develop the properties of these theories, illustrating the manner in which they generalize the classical Tate-Swan theories.

Manifolds with Group Actions and Elliptic Operators

Manifolds with Group Actions and Elliptic Operators PDF Author: Vladimir I︠A︡kovlevich Lin
Publisher: American Mathematical Soc.
ISBN: 0821826042
Category : Mathematics
Languages : en
Pages : 90

Get Book Here

Book Description
This work studies equivariant linear second order elliptic operators [italic capital]P on a connected noncompact manifold [italic capital]X with a given action of a group [italic capital]G. The action is assumed to be cocompact, meaning that [italic capitals]GV = [italic capital]X for some compact subset of [italic capital]V of [italic capital]X. The aim is to study the structure of the convex cone of all positive solutions of [italic capital]P[italic]u = 0.